Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112167241> ?p ?o ?g. }
- W3112167241 endingPage "4763" @default.
- W3112167241 startingPage "4751" @default.
- W3112167241 abstract "A key energy consumption in steel metallurgy comes from an iron ore sintering process. Enhancing carbon utilization in this process is important for green manufacturing and energy saving and its prerequisite is a time-series prediction of carbon efficiency. The existing carbon efficiency models usually have a complex structure, leading to a time-consuming training process. In addition, a complete retraining process will be encountered if the models are inaccurate or data change. Analyzing the complex characteristics of the sintering process, we develop an original prediction framework, that is, a weighted kernel-based fuzzy C-means (WKFCM)-based broad learning model (BLM), to achieve fast and effective carbon efficiency modeling. First, sintering parameters affecting carbon efficiency are determined, following the sintering process mechanism. Next, WKFCM clustering is first presented for the identification of multiple operating conditions to better reflect the system dynamics of this process. Then, the BLM is built under each operating condition. Finally, a nearest neighbor criterion is used to determine which BLM is invoked for the time-series prediction of carbon efficiency. Experimental results using actual run data exhibit that, compared with other prediction models, the developed model can more accurately and efficiently achieve the time-series prediction of carbon efficiency. Furthermore, the developed model can also be used for the efficient and effective modeling of other industrial processes due to its flexible structure." @default.
- W3112167241 created "2020-12-21" @default.
- W3112167241 creator A5003799782 @default.
- W3112167241 creator A5024710105 @default.
- W3112167241 creator A5029643093 @default.
- W3112167241 creator A5055329626 @default.
- W3112167241 creator A5074710425 @default.
- W3112167241 creator A5091260655 @default.
- W3112167241 date "2022-06-01" @default.
- W3112167241 modified "2023-10-17" @default.
- W3112167241 title "Weighted Kernel Fuzzy C-Means-Based Broad Learning Model for Time-Series Prediction of Carbon Efficiency in Iron Ore Sintering Process" @default.
- W3112167241 cites W1649111190 @default.
- W3112167241 cites W1985702987 @default.
- W3112167241 cites W1993882792 @default.
- W3112167241 cites W2028379735 @default.
- W3112167241 cites W2036282945 @default.
- W3112167241 cites W2135717036 @default.
- W3112167241 cites W2189312358 @default.
- W3112167241 cites W2335899954 @default.
- W3112167241 cites W2408850300 @default.
- W3112167241 cites W2473060649 @default.
- W3112167241 cites W2526973686 @default.
- W3112167241 cites W2528237000 @default.
- W3112167241 cites W2559013665 @default.
- W3112167241 cites W2560260256 @default.
- W3112167241 cites W2560385169 @default.
- W3112167241 cites W2619592458 @default.
- W3112167241 cites W2737654582 @default.
- W3112167241 cites W2738226240 @default.
- W3112167241 cites W2779640815 @default.
- W3112167241 cites W2789845700 @default.
- W3112167241 cites W2795915456 @default.
- W3112167241 cites W2884121498 @default.
- W3112167241 cites W2887576641 @default.
- W3112167241 cites W2888109343 @default.
- W3112167241 cites W2889731581 @default.
- W3112167241 cites W2890126432 @default.
- W3112167241 cites W2890644749 @default.
- W3112167241 cites W2890706287 @default.
- W3112167241 cites W2891223087 @default.
- W3112167241 cites W2899581489 @default.
- W3112167241 cites W2909580881 @default.
- W3112167241 cites W2917746835 @default.
- W3112167241 cites W2927404528 @default.
- W3112167241 cites W2944937715 @default.
- W3112167241 cites W2972985782 @default.
- W3112167241 cites W2990234411 @default.
- W3112167241 doi "https://doi.org/10.1109/tcyb.2020.3035800" @default.
- W3112167241 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33296327" @default.
- W3112167241 hasPublicationYear "2022" @default.
- W3112167241 type Work @default.
- W3112167241 sameAs 3112167241 @default.
- W3112167241 citedByCount "4" @default.
- W3112167241 countsByYear W31121672412022 @default.
- W3112167241 countsByYear W31121672412023 @default.
- W3112167241 crossrefType "journal-article" @default.
- W3112167241 hasAuthorship W3112167241A5003799782 @default.
- W3112167241 hasAuthorship W3112167241A5024710105 @default.
- W3112167241 hasAuthorship W3112167241A5029643093 @default.
- W3112167241 hasAuthorship W3112167241A5055329626 @default.
- W3112167241 hasAuthorship W3112167241A5074710425 @default.
- W3112167241 hasAuthorship W3112167241A5091260655 @default.
- W3112167241 hasConcept C104779481 @default.
- W3112167241 hasConcept C111919701 @default.
- W3112167241 hasConcept C11413529 @default.
- W3112167241 hasConcept C114614502 @default.
- W3112167241 hasConcept C119599485 @default.
- W3112167241 hasConcept C119857082 @default.
- W3112167241 hasConcept C127413603 @default.
- W3112167241 hasConcept C140205800 @default.
- W3112167241 hasConcept C143724316 @default.
- W3112167241 hasConcept C151406439 @default.
- W3112167241 hasConcept C151730666 @default.
- W3112167241 hasConcept C154945302 @default.
- W3112167241 hasConcept C191897082 @default.
- W3112167241 hasConcept C192562407 @default.
- W3112167241 hasConcept C21880701 @default.
- W3112167241 hasConcept C2742236 @default.
- W3112167241 hasConcept C2777581544 @default.
- W3112167241 hasConcept C33923547 @default.
- W3112167241 hasConcept C41008148 @default.
- W3112167241 hasConcept C58166 @default.
- W3112167241 hasConcept C73555534 @default.
- W3112167241 hasConcept C74193536 @default.
- W3112167241 hasConcept C86803240 @default.
- W3112167241 hasConcept C98045186 @default.
- W3112167241 hasConceptScore W3112167241C104779481 @default.
- W3112167241 hasConceptScore W3112167241C111919701 @default.
- W3112167241 hasConceptScore W3112167241C11413529 @default.
- W3112167241 hasConceptScore W3112167241C114614502 @default.
- W3112167241 hasConceptScore W3112167241C119599485 @default.
- W3112167241 hasConceptScore W3112167241C119857082 @default.
- W3112167241 hasConceptScore W3112167241C127413603 @default.
- W3112167241 hasConceptScore W3112167241C140205800 @default.
- W3112167241 hasConceptScore W3112167241C143724316 @default.
- W3112167241 hasConceptScore W3112167241C151406439 @default.
- W3112167241 hasConceptScore W3112167241C151730666 @default.
- W3112167241 hasConceptScore W3112167241C154945302 @default.