Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112264349> ?p ?o ?g. }
- W3112264349 endingPage "116436" @default.
- W3112264349 startingPage "116436" @default.
- W3112264349 abstract "High-performance heat transfer fluids significantly affect the efficiency and overall performance of high heat flux systems. A novel nanocomposite containing mesoporous silica with high dispersity decorated with copper nanoparticles with a high thermal conductivity was synthesized. Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were conducted to characterize the synthesized nanocomposite. The present study investigated the thermal and hydraulic characteristics of hybrid nanofluids developed through dispersing the synthesized nanocomposite (Cu/SBA-15) in water in a helically-grooved tube. Changes in thermo-hydraulic characteristics by a Reynolds number of Re = 5000–12000 and the nanocomposite weight fraction concentration (deionized water, C = 0.012 wt%, 0.017 wt% and 0.023 wt%) were examined. Adding the nanocomposite to the base fluid with C = 0.023 wt% resulted in the maximum increase of 33.45% in heat transfer. The Nusselt number was found proportional to the Reynolds number and the nanocomposite weight fraction concentration. The highest thermal performance factor can be got when Re = 7780 and C = 0.023 wt%. The experimental results were employed to propose an experimental correlation for predicting the thermal performance factor, friction factor, viscosity and the Nusselt number of the hybrid nanofluid." @default.
- W3112264349 created "2020-12-21" @default.
- W3112264349 creator A5036406625 @default.
- W3112264349 creator A5060692880 @default.
- W3112264349 creator A5077088909 @default.
- W3112264349 date "2021-02-01" @default.
- W3112264349 modified "2023-09-25" @default.
- W3112264349 title "Thermo-hydraulic performance of mesoporous silica with Cu nanoparticles in helically grooved tube" @default.
- W3112264349 cites W1970020978 @default.
- W3112264349 cites W1975067255 @default.
- W3112264349 cites W1988518769 @default.
- W3112264349 cites W1988745485 @default.
- W3112264349 cites W1989188980 @default.
- W3112264349 cites W1995509352 @default.
- W3112264349 cites W2002728487 @default.
- W3112264349 cites W2006872725 @default.
- W3112264349 cites W2018295848 @default.
- W3112264349 cites W2020874901 @default.
- W3112264349 cites W2034482142 @default.
- W3112264349 cites W2050224845 @default.
- W3112264349 cites W2051623369 @default.
- W3112264349 cites W2051947505 @default.
- W3112264349 cites W2052465295 @default.
- W3112264349 cites W2057856329 @default.
- W3112264349 cites W2060543310 @default.
- W3112264349 cites W2064642495 @default.
- W3112264349 cites W2069219081 @default.
- W3112264349 cites W2073352173 @default.
- W3112264349 cites W2078380809 @default.
- W3112264349 cites W2087070363 @default.
- W3112264349 cites W2094986404 @default.
- W3112264349 cites W2122795128 @default.
- W3112264349 cites W2148730186 @default.
- W3112264349 cites W2190114268 @default.
- W3112264349 cites W2200781560 @default.
- W3112264349 cites W2299244468 @default.
- W3112264349 cites W2311869330 @default.
- W3112264349 cites W2320410120 @default.
- W3112264349 cites W2323163334 @default.
- W3112264349 cites W2330851001 @default.
- W3112264349 cites W2331245434 @default.
- W3112264349 cites W2417367996 @default.
- W3112264349 cites W2467914890 @default.
- W3112264349 cites W2469665100 @default.
- W3112264349 cites W2531334171 @default.
- W3112264349 cites W2531496566 @default.
- W3112264349 cites W2535628002 @default.
- W3112264349 cites W2560123772 @default.
- W3112264349 cites W2609784609 @default.
- W3112264349 cites W2622740444 @default.
- W3112264349 cites W2752195335 @default.
- W3112264349 cites W2752521419 @default.
- W3112264349 cites W2779913268 @default.
- W3112264349 cites W2792594020 @default.
- W3112264349 cites W2796314470 @default.
- W3112264349 cites W279751186 @default.
- W3112264349 cites W2802714920 @default.
- W3112264349 cites W2808479388 @default.
- W3112264349 cites W2884944517 @default.
- W3112264349 cites W2886481764 @default.
- W3112264349 cites W2906310808 @default.
- W3112264349 cites W2912788428 @default.
- W3112264349 cites W2941818154 @default.
- W3112264349 cites W2960920183 @default.
- W3112264349 cites W2981252434 @default.
- W3112264349 cites W2982471825 @default.
- W3112264349 cites W2995936116 @default.
- W3112264349 cites W2996264027 @default.
- W3112264349 cites W3000185520 @default.
- W3112264349 cites W3010372720 @default.
- W3112264349 cites W3030082274 @default.
- W3112264349 doi "https://doi.org/10.1016/j.applthermaleng.2020.116436" @default.
- W3112264349 hasPublicationYear "2021" @default.
- W3112264349 type Work @default.
- W3112264349 sameAs 3112264349 @default.
- W3112264349 citedByCount "9" @default.
- W3112264349 countsByYear W31122643492022 @default.
- W3112264349 countsByYear W31122643492023 @default.
- W3112264349 crossrefType "journal-article" @default.
- W3112264349 hasAuthorship W3112264349A5036406625 @default.
- W3112264349 hasAuthorship W3112264349A5060692880 @default.
- W3112264349 hasAuthorship W3112264349A5077088909 @default.
- W3112264349 hasConcept C113196181 @default.
- W3112264349 hasConcept C121332964 @default.
- W3112264349 hasConcept C127413603 @default.
- W3112264349 hasConcept C130230704 @default.
- W3112264349 hasConcept C155672457 @default.
- W3112264349 hasConcept C159985019 @default.
- W3112264349 hasConcept C160892712 @default.
- W3112264349 hasConcept C171250308 @default.
- W3112264349 hasConcept C175708663 @default.
- W3112264349 hasConcept C182748727 @default.
- W3112264349 hasConcept C185592680 @default.
- W3112264349 hasConcept C192562407 @default.
- W3112264349 hasConcept C196558001 @default.
- W3112264349 hasConcept C21946209 @default.
- W3112264349 hasConcept C26771246 @default.
- W3112264349 hasConcept C42360764 @default.