Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112365224> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3112365224 endingPage "120511" @default.
- W3112365224 startingPage "120511" @default.
- W3112365224 abstract "Recommendation systems are widely applied in many fields, such as online customized product searches and customer-centric advertisements. This research develops the methodology for a patent recommender to discover semantically relevant patents for further technology mining and trend analysis. The proposed recommender adopts machine learning (ML) algorithms for natural language processing (NLP) to represent patent documents in vector space and to enable semantic analyses of the patent documents. The ML approach of neural network (NN) language models, trained by domain patent documents (text) as a training set, convert patent documents into vectors and, thus, can identify semantically similar patents using document similarity measures. In particular, the proposed recommender is deployed to in-depth case studies for advanced patent recommendations. The case domain of smart machinery is used to better enable smart manufacturing by incorporating innovative technologies, such as intelligent sensors, intelligent controllers, and intelligent decision making. The research uses six sub-domains in smart machinery technologies as the case studies to verify the superior accuracy and efficacy of the recommender system and methodologies." @default.
- W3112365224 created "2020-12-21" @default.
- W3112365224 creator A5015633372 @default.
- W3112365224 creator A5020975783 @default.
- W3112365224 creator A5040850955 @default.
- W3112365224 date "2021-03-01" @default.
- W3112365224 modified "2023-10-15" @default.
- W3112365224 title "An intelligent patent recommender adopting machine learning approach for natural language processing: A case study for smart machinery technology mining" @default.
- W3112365224 cites W1841147898 @default.
- W3112365224 cites W1985659152 @default.
- W3112365224 cites W1988035077 @default.
- W3112365224 cites W2012291324 @default.
- W3112365224 cites W2025605741 @default.
- W3112365224 cites W2030808931 @default.
- W3112365224 cites W2052617913 @default.
- W3112365224 cites W2113297784 @default.
- W3112365224 cites W2153889650 @default.
- W3112365224 cites W2159094788 @default.
- W3112365224 cites W2171960770 @default.
- W3112365224 cites W2278853476 @default.
- W3112365224 cites W2535680912 @default.
- W3112365224 cites W2580144152 @default.
- W3112365224 cites W2591179595 @default.
- W3112365224 cites W2922665519 @default.
- W3112365224 cites W2963514026 @default.
- W3112365224 cites W2996946686 @default.
- W3112365224 doi "https://doi.org/10.1016/j.techfore.2020.120511" @default.
- W3112365224 hasPublicationYear "2021" @default.
- W3112365224 type Work @default.
- W3112365224 sameAs 3112365224 @default.
- W3112365224 citedByCount "20" @default.
- W3112365224 countsByYear W31123652242021 @default.
- W3112365224 countsByYear W31123652242022 @default.
- W3112365224 countsByYear W31123652242023 @default.
- W3112365224 crossrefType "journal-article" @default.
- W3112365224 hasAuthorship W3112365224A5015633372 @default.
- W3112365224 hasAuthorship W3112365224A5020975783 @default.
- W3112365224 hasAuthorship W3112365224A5040850955 @default.
- W3112365224 hasConcept C103278499 @default.
- W3112365224 hasConcept C114419676 @default.
- W3112365224 hasConcept C115961682 @default.
- W3112365224 hasConcept C119857082 @default.
- W3112365224 hasConcept C134306372 @default.
- W3112365224 hasConcept C154945302 @default.
- W3112365224 hasConcept C177264268 @default.
- W3112365224 hasConcept C195324797 @default.
- W3112365224 hasConcept C199360897 @default.
- W3112365224 hasConcept C23123220 @default.
- W3112365224 hasConcept C2524010 @default.
- W3112365224 hasConcept C33923547 @default.
- W3112365224 hasConcept C36503486 @default.
- W3112365224 hasConcept C41008148 @default.
- W3112365224 hasConcept C50644808 @default.
- W3112365224 hasConcept C557471498 @default.
- W3112365224 hasConcept C90673727 @default.
- W3112365224 hasConceptScore W3112365224C103278499 @default.
- W3112365224 hasConceptScore W3112365224C114419676 @default.
- W3112365224 hasConceptScore W3112365224C115961682 @default.
- W3112365224 hasConceptScore W3112365224C119857082 @default.
- W3112365224 hasConceptScore W3112365224C134306372 @default.
- W3112365224 hasConceptScore W3112365224C154945302 @default.
- W3112365224 hasConceptScore W3112365224C177264268 @default.
- W3112365224 hasConceptScore W3112365224C195324797 @default.
- W3112365224 hasConceptScore W3112365224C199360897 @default.
- W3112365224 hasConceptScore W3112365224C23123220 @default.
- W3112365224 hasConceptScore W3112365224C2524010 @default.
- W3112365224 hasConceptScore W3112365224C33923547 @default.
- W3112365224 hasConceptScore W3112365224C36503486 @default.
- W3112365224 hasConceptScore W3112365224C41008148 @default.
- W3112365224 hasConceptScore W3112365224C50644808 @default.
- W3112365224 hasConceptScore W3112365224C557471498 @default.
- W3112365224 hasConceptScore W3112365224C90673727 @default.
- W3112365224 hasFunder F4320322795 @default.
- W3112365224 hasLocation W31123652241 @default.
- W3112365224 hasOpenAccess W3112365224 @default.
- W3112365224 hasPrimaryLocation W31123652241 @default.
- W3112365224 hasRelatedWork W1648347818 @default.
- W3112365224 hasRelatedWork W1730245467 @default.
- W3112365224 hasRelatedWork W1984733048 @default.
- W3112365224 hasRelatedWork W1987438766 @default.
- W3112365224 hasRelatedWork W2161485269 @default.
- W3112365224 hasRelatedWork W2743342830 @default.
- W3112365224 hasRelatedWork W3123274381 @default.
- W3112365224 hasRelatedWork W3212288216 @default.
- W3112365224 hasRelatedWork W4206478093 @default.
- W3112365224 hasRelatedWork W4287695425 @default.
- W3112365224 hasVolume "164" @default.
- W3112365224 isParatext "false" @default.
- W3112365224 isRetracted "false" @default.
- W3112365224 magId "3112365224" @default.
- W3112365224 workType "article" @default.