Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112376181> ?p ?o ?g. }
- W3112376181 abstract "The accurate predicting of physical properties and bioactivity of drug molecules in deep learning depends on how molecules are represented. Many types of molecular descriptors have been developed for quantitative structure-activity/property relationships quantitative structure-activity relationships (QSPR). However, each molecular descriptor is optimized for a specific application with encoding preference. Considering that standalone featurization methods may only cover parts of information of the chemical molecules, we proposed to build the conjoint fingerprint by combining two supplementary fingerprints. The impact of conjoint fingerprint and each standalone fingerprint on predicting performance was systematically evaluated in predicting the logarithm of the partition coefficient (logP) and binding affinity of protein-ligand by using machine learning/deep learning (ML/DL) methods, including random forest (RF), support vector regression (SVR), extreme gradient boosting (XGBoost), long short-term memory network (LSTM), and deep neural network (DNN). The results demonstrated that the conjoint fingerprint yielded improved predictive performance, even outperforming the consensus model using two standalone fingerprints among four out of five examined methods. Given that the conjoint fingerprint scheme shows easy extensibility and high applicability, we expect that the proposed conjoint scheme would create new opportunities for continuously improving predictive performance of deep learning by harnessing the complementarity of various types of fingerprints." @default.
- W3112376181 created "2020-12-21" @default.
- W3112376181 creator A5007385062 @default.
- W3112376181 creator A5011545312 @default.
- W3112376181 creator A5035421707 @default.
- W3112376181 creator A5043750371 @default.
- W3112376181 creator A5071710594 @default.
- W3112376181 date "2020-12-18" @default.
- W3112376181 modified "2023-10-03" @default.
- W3112376181 title "Improvement of Prediction Performance With Conjoint Molecular Fingerprint in Deep Learning" @default.
- W3112376181 cites W1849277567 @default.
- W3112376181 cites W1947025626 @default.
- W3112376181 cites W1975147762 @default.
- W3112376181 cites W1982130922 @default.
- W3112376181 cites W1983478747 @default.
- W3112376181 cites W1988037271 @default.
- W3112376181 cites W1998848097 @default.
- W3112376181 cites W1999638776 @default.
- W3112376181 cites W2026909852 @default.
- W3112376181 cites W2038702914 @default.
- W3112376181 cites W2059405137 @default.
- W3112376181 cites W2062875420 @default.
- W3112376181 cites W2066273100 @default.
- W3112376181 cites W2068337719 @default.
- W3112376181 cites W2071458812 @default.
- W3112376181 cites W2073392404 @default.
- W3112376181 cites W2081709350 @default.
- W3112376181 cites W2086729168 @default.
- W3112376181 cites W2090996511 @default.
- W3112376181 cites W2091439417 @default.
- W3112376181 cites W2114162221 @default.
- W3112376181 cites W2116898701 @default.
- W3112376181 cites W2119512897 @default.
- W3112376181 cites W2165492846 @default.
- W3112376181 cites W2200017991 @default.
- W3112376181 cites W2290847742 @default.
- W3112376181 cites W2311607323 @default.
- W3112376181 cites W2467309505 @default.
- W3112376181 cites W2516938563 @default.
- W3112376181 cites W2556851635 @default.
- W3112376181 cites W2582187633 @default.
- W3112376181 cites W2594183968 @default.
- W3112376181 cites W2604320291 @default.
- W3112376181 cites W2734982589 @default.
- W3112376181 cites W2766856748 @default.
- W3112376181 cites W2767034401 @default.
- W3112376181 cites W2767891136 @default.
- W3112376181 cites W2785947426 @default.
- W3112376181 cites W2791315675 @default.
- W3112376181 cites W2805404971 @default.
- W3112376181 cites W2883583109 @default.
- W3112376181 cites W2884430236 @default.
- W3112376181 cites W2892911634 @default.
- W3112376181 cites W2901476322 @default.
- W3112376181 cites W2911627187 @default.
- W3112376181 cites W2911964244 @default.
- W3112376181 cites W2919115771 @default.
- W3112376181 cites W2945755098 @default.
- W3112376181 cites W2950128007 @default.
- W3112376181 cites W2951048875 @default.
- W3112376181 cites W2955986556 @default.
- W3112376181 cites W2959938226 @default.
- W3112376181 cites W2982197252 @default.
- W3112376181 cites W2998075856 @default.
- W3112376181 cites W2999044305 @default.
- W3112376181 cites W2999454031 @default.
- W3112376181 cites W3000423537 @default.
- W3112376181 cites W3004146375 @default.
- W3112376181 cites W3012519883 @default.
- W3112376181 cites W3013857270 @default.
- W3112376181 cites W3015208165 @default.
- W3112376181 cites W3023204497 @default.
- W3112376181 cites W3028758218 @default.
- W3112376181 cites W3032963903 @default.
- W3112376181 cites W3092809625 @default.
- W3112376181 cites W3106162654 @default.
- W3112376181 doi "https://doi.org/10.3389/fphar.2020.606668" @default.
- W3112376181 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7819282" @default.
- W3112376181 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33488387" @default.
- W3112376181 hasPublicationYear "2020" @default.
- W3112376181 type Work @default.
- W3112376181 sameAs 3112376181 @default.
- W3112376181 citedByCount "27" @default.
- W3112376181 countsByYear W31123761812021 @default.
- W3112376181 countsByYear W31123761812022 @default.
- W3112376181 countsByYear W31123761812023 @default.
- W3112376181 crossrefType "journal-article" @default.
- W3112376181 hasAuthorship W3112376181A5007385062 @default.
- W3112376181 hasAuthorship W3112376181A5011545312 @default.
- W3112376181 hasAuthorship W3112376181A5035421707 @default.
- W3112376181 hasAuthorship W3112376181A5043750371 @default.
- W3112376181 hasAuthorship W3112376181A5071710594 @default.
- W3112376181 hasBestOaLocation W31123761811 @default.
- W3112376181 hasConcept C108583219 @default.
- W3112376181 hasConcept C119857082 @default.
- W3112376181 hasConcept C12267149 @default.
- W3112376181 hasConcept C124101348 @default.
- W3112376181 hasConcept C153180895 @default.
- W3112376181 hasConcept C154945302 @default.
- W3112376181 hasConcept C164085508 @default.