Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112460642> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3112460642 abstract "Abstract Background The search for early biomarkers of mild cognitive impairment (MCI) has been central to Alzheimer's Disease (AD) and the dementia research community in recent years. While there exist in‐vivo biomarkers (e.g., beta‐amyloid and tau) that can serve as indicators of pathological progression toward AD, biomarker screenings are prohibitively expensive to scale if widely used among pre‐symptomatic individuals in the outpatient setting. Behavior and social markers such as language, speech, and conversational behaviors reflect cognitive changes that may precede physical changes and offer a much more cost‐effective option for preclinical MCI detection, especially if they can be extracted from a non‐clinical setting. Method We developed a prototype AI conversational agent that conducts screening conversations with participants. Specifically, this AI agent must learn to ask the right sequence of questions to distinguishing the conversational characteristics of the participants with MCI from those with normal cognition. Using transcribed data obtained from recorded conversational interactions between participants and trained interviewers generated in a recently completed clinical trial, and applying supervised learning models to these data, we developed a novel reinforcement learning (RL) pipeline and a dialogue simulation environment to train an efficient dialogue agent to explore a range of semi‐structured questions. We train and validate our AI dialogue agent based on transcribed data from a randomized controlled behavioral intervention study, where we use the transcribed data from 41 subjects (14 MCI, 27 NL). Each subject has an average of 35 turns of dialogue on average. Result The results show that while using only a few turns of conversation, our framework can significantly outperform state‐of‐the‐art supervised learning approaches used in a past study. An AI agent of 30 turns of dialogue achieves over 0.853 Area Under the Receiver Operating Characteristic Curves (AUC) and 0.809 AUC with 20 turns, as compared to 0.811 AUC with the full dialogue turns. Conclusion Our dialogue‐based AI agent presents a step toward using AI to extend clinical care beyond the classical hospital and clinical settings, where we find that AI‐generated dialogues produce more predictive linguistic markers." @default.
- W3112460642 created "2020-12-21" @default.
- W3112460642 creator A5001618103 @default.
- W3112460642 creator A5004655324 @default.
- W3112460642 creator A5021979900 @default.
- W3112460642 creator A5047215778 @default.
- W3112460642 creator A5086529957 @default.
- W3112460642 date "2020-12-01" @default.
- W3112460642 modified "2023-10-17" @default.
- W3112460642 title "Scalable diagnostic screening of mild cognitive impairment using AI dialogue agent" @default.
- W3112460642 doi "https://doi.org/10.1002/alz.041034" @default.
- W3112460642 hasPublicationYear "2020" @default.
- W3112460642 type Work @default.
- W3112460642 sameAs 3112460642 @default.
- W3112460642 citedByCount "1" @default.
- W3112460642 crossrefType "journal-article" @default.
- W3112460642 hasAuthorship W3112460642A5001618103 @default.
- W3112460642 hasAuthorship W3112460642A5004655324 @default.
- W3112460642 hasAuthorship W3112460642A5021979900 @default.
- W3112460642 hasAuthorship W3112460642A5047215778 @default.
- W3112460642 hasAuthorship W3112460642A5086529957 @default.
- W3112460642 hasBestOaLocation W31124606421 @default.
- W3112460642 hasConcept C118552586 @default.
- W3112460642 hasConcept C119857082 @default.
- W3112460642 hasConcept C136764020 @default.
- W3112460642 hasConcept C142724271 @default.
- W3112460642 hasConcept C154945302 @default.
- W3112460642 hasConcept C15744967 @default.
- W3112460642 hasConcept C168563851 @default.
- W3112460642 hasConcept C169900460 @default.
- W3112460642 hasConcept C173853756 @default.
- W3112460642 hasConcept C180747234 @default.
- W3112460642 hasConcept C204321447 @default.
- W3112460642 hasConcept C2779134260 @default.
- W3112460642 hasConcept C2779483572 @default.
- W3112460642 hasConcept C2984915365 @default.
- W3112460642 hasConcept C41008148 @default.
- W3112460642 hasConcept C48044578 @default.
- W3112460642 hasConcept C71924100 @default.
- W3112460642 hasConcept C77088390 @default.
- W3112460642 hasConcept C97541855 @default.
- W3112460642 hasConceptScore W3112460642C118552586 @default.
- W3112460642 hasConceptScore W3112460642C119857082 @default.
- W3112460642 hasConceptScore W3112460642C136764020 @default.
- W3112460642 hasConceptScore W3112460642C142724271 @default.
- W3112460642 hasConceptScore W3112460642C154945302 @default.
- W3112460642 hasConceptScore W3112460642C15744967 @default.
- W3112460642 hasConceptScore W3112460642C168563851 @default.
- W3112460642 hasConceptScore W3112460642C169900460 @default.
- W3112460642 hasConceptScore W3112460642C173853756 @default.
- W3112460642 hasConceptScore W3112460642C180747234 @default.
- W3112460642 hasConceptScore W3112460642C204321447 @default.
- W3112460642 hasConceptScore W3112460642C2779134260 @default.
- W3112460642 hasConceptScore W3112460642C2779483572 @default.
- W3112460642 hasConceptScore W3112460642C2984915365 @default.
- W3112460642 hasConceptScore W3112460642C41008148 @default.
- W3112460642 hasConceptScore W3112460642C48044578 @default.
- W3112460642 hasConceptScore W3112460642C71924100 @default.
- W3112460642 hasConceptScore W3112460642C77088390 @default.
- W3112460642 hasConceptScore W3112460642C97541855 @default.
- W3112460642 hasIssue "S5" @default.
- W3112460642 hasLocation W31124606421 @default.
- W3112460642 hasOpenAccess W3112460642 @default.
- W3112460642 hasPrimaryLocation W31124606421 @default.
- W3112460642 hasRelatedWork W1862650538 @default.
- W3112460642 hasRelatedWork W2092896632 @default.
- W3112460642 hasRelatedWork W2174703168 @default.
- W3112460642 hasRelatedWork W2748952813 @default.
- W3112460642 hasRelatedWork W2899084033 @default.
- W3112460642 hasRelatedWork W3201457769 @default.
- W3112460642 hasRelatedWork W4312389194 @default.
- W3112460642 hasRelatedWork W4319083788 @default.
- W3112460642 hasRelatedWork W1872130062 @default.
- W3112460642 hasRelatedWork W2470370241 @default.
- W3112460642 hasVolume "16" @default.
- W3112460642 isParatext "false" @default.
- W3112460642 isRetracted "false" @default.
- W3112460642 magId "3112460642" @default.
- W3112460642 workType "article" @default.