Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112492401> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3112492401 endingPage "108838" @default.
- W3112492401 startingPage "108838" @default.
- W3112492401 abstract "In the recent past, biomedical domain has become popular due to digital image processing of accurate and efficient diagnosis of clinical patients using Computer-Aided Diagnosis (CAD). Appropriate and punctual disease identification and treatment arrangement directs to enhance superiority of life and improved life hope in Alzheimer Disease (AD) patients. The cutting-edge approaches that believe multimodal analysis have been shown to be efficient and accurate are improved compared with manual analysis. Many tools have been introduced for detection of Alzheimer but still it is a financially high costly diagnosis system gives detection of disease with low accuracy and efficient due to performance of Magnetic Resonance Imaging (MRI) scanning devices. A novel methodology is proposed in this research as CAD process using various algorithms for predicting AD. The MRI images from scanning device are a highly noisy image due to thermal activities of hardware involved in scanning device. The image restoration technique is applied using 2D Adaptive Bilateral Filter (2D-ABF) algorithm. The quality of image in terms of brightness and contrast are improved using image enhancement techniques based on Adaptive Histogram Adjustment (AHA) algorithm. The Region of Interest of Alzheimer disease is segmented using Adaptive Mean Shift Modified Expectation Maximization (AMS-MEM) algorithm. The various features are calculated using second order 2-Dimensional Gray Level Co-Occurrence Matrix (2D-GLCM). Based on selection of features, the Deep Learning (DL) approach is used to classify the disease images and its stages. The Deep Convolutional Neural Network (DCNN) is the classification technique implemented to classify disease for proper diagnostic decision making. The experimental results prove that the proposed methodology provides better accuracy and efficiency than existing system." @default.
- W3112492401 created "2020-12-21" @default.
- W3112492401 creator A5010471366 @default.
- W3112492401 creator A5029095675 @default.
- W3112492401 creator A5041887223 @default.
- W3112492401 creator A5045658659 @default.
- W3112492401 creator A5048221860 @default.
- W3112492401 creator A5079557274 @default.
- W3112492401 date "2021-02-01" @default.
- W3112492401 modified "2023-10-07" @default.
- W3112492401 title "A deep convolutional neural network based computer aided diagnosis system for the prediction of Alzheimer's disease in MRI images" @default.
- W3112492401 cites W2030303533 @default.
- W3112492401 cites W2106495731 @default.
- W3112492401 cites W2548711561 @default.
- W3112492401 cites W2588755956 @default.
- W3112492401 cites W2799476711 @default.
- W3112492401 cites W2894511130 @default.
- W3112492401 cites W2919780733 @default.
- W3112492401 cites W2923280046 @default.
- W3112492401 cites W2947823562 @default.
- W3112492401 cites W2950764941 @default.
- W3112492401 cites W2963356165 @default.
- W3112492401 cites W3011965842 @default.
- W3112492401 cites W3101153565 @default.
- W3112492401 cites W3105078060 @default.
- W3112492401 cites W4249049849 @default.
- W3112492401 doi "https://doi.org/10.1016/j.measurement.2020.108838" @default.
- W3112492401 hasPublicationYear "2021" @default.
- W3112492401 type Work @default.
- W3112492401 sameAs 3112492401 @default.
- W3112492401 citedByCount "23" @default.
- W3112492401 countsByYear W31124924012021 @default.
- W3112492401 countsByYear W31124924012022 @default.
- W3112492401 countsByYear W31124924012023 @default.
- W3112492401 crossrefType "journal-article" @default.
- W3112492401 hasAuthorship W3112492401A5010471366 @default.
- W3112492401 hasAuthorship W3112492401A5029095675 @default.
- W3112492401 hasAuthorship W3112492401A5041887223 @default.
- W3112492401 hasAuthorship W3112492401A5045658659 @default.
- W3112492401 hasAuthorship W3112492401A5048221860 @default.
- W3112492401 hasAuthorship W3112492401A5079557274 @default.
- W3112492401 hasConcept C115961682 @default.
- W3112492401 hasConcept C127413603 @default.
- W3112492401 hasConcept C153180895 @default.
- W3112492401 hasConcept C154945302 @default.
- W3112492401 hasConcept C194789388 @default.
- W3112492401 hasConcept C199639397 @default.
- W3112492401 hasConcept C2779549770 @default.
- W3112492401 hasConcept C31972630 @default.
- W3112492401 hasConcept C41008148 @default.
- W3112492401 hasConcept C50644808 @default.
- W3112492401 hasConcept C53533937 @default.
- W3112492401 hasConcept C81363708 @default.
- W3112492401 hasConcept C9417928 @default.
- W3112492401 hasConceptScore W3112492401C115961682 @default.
- W3112492401 hasConceptScore W3112492401C127413603 @default.
- W3112492401 hasConceptScore W3112492401C153180895 @default.
- W3112492401 hasConceptScore W3112492401C154945302 @default.
- W3112492401 hasConceptScore W3112492401C194789388 @default.
- W3112492401 hasConceptScore W3112492401C199639397 @default.
- W3112492401 hasConceptScore W3112492401C2779549770 @default.
- W3112492401 hasConceptScore W3112492401C31972630 @default.
- W3112492401 hasConceptScore W3112492401C41008148 @default.
- W3112492401 hasConceptScore W3112492401C50644808 @default.
- W3112492401 hasConceptScore W3112492401C53533937 @default.
- W3112492401 hasConceptScore W3112492401C81363708 @default.
- W3112492401 hasConceptScore W3112492401C9417928 @default.
- W3112492401 hasLocation W31124924011 @default.
- W3112492401 hasOpenAccess W3112492401 @default.
- W3112492401 hasPrimaryLocation W31124924011 @default.
- W3112492401 hasRelatedWork W1498259939 @default.
- W3112492401 hasRelatedWork W1520621782 @default.
- W3112492401 hasRelatedWork W1892011953 @default.
- W3112492401 hasRelatedWork W1983610137 @default.
- W3112492401 hasRelatedWork W1986586280 @default.
- W3112492401 hasRelatedWork W2000407566 @default.
- W3112492401 hasRelatedWork W2016701876 @default.
- W3112492401 hasRelatedWork W2137654917 @default.
- W3112492401 hasRelatedWork W2511137960 @default.
- W3112492401 hasRelatedWork W2540356038 @default.
- W3112492401 hasVolume "171" @default.
- W3112492401 isParatext "false" @default.
- W3112492401 isRetracted "false" @default.
- W3112492401 magId "3112492401" @default.
- W3112492401 workType "article" @default.