Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112696576> ?p ?o ?g. }
- W3112696576 abstract "We determine the asymptotic behavior of the entropy of full coverings of a $L times M$ square lattice by rods of size $ktimes 1$ and $1times k$, in the limit of large $k$. We show that full coverage is possible only if at least one of $L$ and $M$ is a multiple of $k$, and that all allowed configurations can be reached from a standard configuration of all rods being parallel, using only basic flip moves that replace a $k times k$ square of parallel horizontal rods by vertical rods, and vice versa. In the limit of large $k$, we show that the entropy per site $S_2(k)$ tends to $ A k^{-2} ln k$, with $A=1$. We conjecture, based on a perturbative series expansion, that this large-$k$ behavior of entropy per site is super-universal and continues to hold on all $d$-dimensional hyper-cubic lattices, with $d geq 2$." @default.
- W3112696576 created "2020-12-21" @default.
- W3112696576 creator A5040345616 @default.
- W3112696576 creator A5044876621 @default.
- W3112696576 date "2021-04-20" @default.
- W3112696576 modified "2023-09-26" @default.
- W3112696576 title "Entropy of fully packed hard rigid rods on <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>d</mml:mi></mml:math> -dimensional hypercubic lattices" @default.
- W3112696576 cites W1483995010 @default.
- W3112696576 cites W1530558989 @default.
- W3112696576 cites W1653035750 @default.
- W3112696576 cites W1740876652 @default.
- W3112696576 cites W1964607586 @default.
- W3112696576 cites W1969718382 @default.
- W3112696576 cites W1973423850 @default.
- W3112696576 cites W1974135003 @default.
- W3112696576 cites W1977358345 @default.
- W3112696576 cites W1980074085 @default.
- W3112696576 cites W1982250981 @default.
- W3112696576 cites W1985565842 @default.
- W3112696576 cites W1995714262 @default.
- W3112696576 cites W1996085213 @default.
- W3112696576 cites W1996719790 @default.
- W3112696576 cites W1998177026 @default.
- W3112696576 cites W2013156640 @default.
- W3112696576 cites W2016832592 @default.
- W3112696576 cites W2017708745 @default.
- W3112696576 cites W2018650334 @default.
- W3112696576 cites W2021048403 @default.
- W3112696576 cites W2027053193 @default.
- W3112696576 cites W2028181300 @default.
- W3112696576 cites W2030556681 @default.
- W3112696576 cites W2042892270 @default.
- W3112696576 cites W2046855641 @default.
- W3112696576 cites W2047792369 @default.
- W3112696576 cites W2048419020 @default.
- W3112696576 cites W2050850561 @default.
- W3112696576 cites W2060624806 @default.
- W3112696576 cites W2061126985 @default.
- W3112696576 cites W2065331312 @default.
- W3112696576 cites W2065813152 @default.
- W3112696576 cites W2066196783 @default.
- W3112696576 cites W2067313674 @default.
- W3112696576 cites W2068728923 @default.
- W3112696576 cites W2074042625 @default.
- W3112696576 cites W2081149403 @default.
- W3112696576 cites W2083366661 @default.
- W3112696576 cites W2085757840 @default.
- W3112696576 cites W2089117022 @default.
- W3112696576 cites W2089851639 @default.
- W3112696576 cites W2091521721 @default.
- W3112696576 cites W2094655176 @default.
- W3112696576 cites W2122315633 @default.
- W3112696576 cites W2144551292 @default.
- W3112696576 cites W2170591015 @default.
- W3112696576 cites W2235961257 @default.
- W3112696576 cites W2239488575 @default.
- W3112696576 cites W2289421182 @default.
- W3112696576 cites W2325836708 @default.
- W3112696576 cites W2332546767 @default.
- W3112696576 cites W2507250703 @default.
- W3112696576 cites W2610248067 @default.
- W3112696576 cites W2618662711 @default.
- W3112696576 cites W2624784984 @default.
- W3112696576 cites W2775380412 @default.
- W3112696576 cites W2776093744 @default.
- W3112696576 cites W2911826597 @default.
- W3112696576 cites W2964215664 @default.
- W3112696576 cites W2968986358 @default.
- W3112696576 cites W3003945328 @default.
- W3112696576 cites W3005840780 @default.
- W3112696576 cites W3006198768 @default.
- W3112696576 cites W3098306243 @default.
- W3112696576 cites W3098458865 @default.
- W3112696576 cites W3099508559 @default.
- W3112696576 cites W3101747605 @default.
- W3112696576 cites W3103301099 @default.
- W3112696576 cites W3104854458 @default.
- W3112696576 doi "https://doi.org/10.1103/physreve.103.042130" @default.
- W3112696576 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34005993" @default.
- W3112696576 hasPublicationYear "2021" @default.
- W3112696576 type Work @default.
- W3112696576 sameAs 3112696576 @default.
- W3112696576 citedByCount "11" @default.
- W3112696576 countsByYear W31126965762021 @default.
- W3112696576 countsByYear W31126965762022 @default.
- W3112696576 countsByYear W31126965762023 @default.
- W3112696576 crossrefType "journal-article" @default.
- W3112696576 hasAuthorship W3112696576A5040345616 @default.
- W3112696576 hasAuthorship W3112696576A5044876621 @default.
- W3112696576 hasBestOaLocation W31126965762 @default.
- W3112696576 hasConcept C106301342 @default.
- W3112696576 hasConcept C114614502 @default.
- W3112696576 hasConcept C121332964 @default.
- W3112696576 hasConcept C121864883 @default.
- W3112696576 hasConcept C134306372 @default.
- W3112696576 hasConcept C142724271 @default.
- W3112696576 hasConcept C151201525 @default.
- W3112696576 hasConcept C162184086 @default.
- W3112696576 hasConcept C204787440 @default.
- W3112696576 hasConcept C24890656 @default.