Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112702945> ?p ?o ?g. }
- W3112702945 endingPage "76" @default.
- W3112702945 startingPage "52" @default.
- W3112702945 abstract "Despite extensive research, measurable benefits of predictive policing are scarce. We argue that powerful models might not always help the work of officers. Furthermore, developed models are often unexplainable, leading to trust issues between police intuition and machine-made prediction. We use a joint approach, mixing criminology and data science knowledge, to design an explainable predictive policing model. The proposed model (a set of explainable decision trees) can predict police resource requirement across the city and explain this prediction based on human-understandable cues (i.e., past event information, weather, and socio-demographic information). The explainable decision tree is then compared to a non-explainable model (i.e., a neural network) to compare performance. Analyzing the decision tree behaviour revealed multiple relations with established criminology knowledge. Weather and recent event distribution were found to be the most useful predictors of police workforce resource. Despite wide research showing relationships between socio-demographic information and police activity, socio-demographic information did not contribute much to the model’s performance. Though there is a lack of research on measurable effects of predictive policing applications, we argue that combining human instinct with machine prediction reduces risks of human knowledge loss, machine bias, and lack of confidence in the system." @default.
- W3112702945 created "2020-12-21" @default.
- W3112702945 creator A5032851978 @default.
- W3112702945 creator A5040012343 @default.
- W3112702945 creator A5051874628 @default.
- W3112702945 creator A5052817951 @default.
- W3112702945 creator A5065418889 @default.
- W3112702945 creator A5087515966 @default.
- W3112702945 creator A5088695218 @default.
- W3112702945 date "2020-10-01" @default.
- W3112702945 modified "2023-09-27" @default.
- W3112702945 title "Designing an Explainable Predictive Policing Model to Forecast Police Workforce Distribution in Cities" @default.
- W3112702945 cites W1527081738 @default.
- W3112702945 cites W1530964950 @default.
- W3112702945 cites W1558935835 @default.
- W3112702945 cites W1887233987 @default.
- W3112702945 cites W1968595784 @default.
- W3112702945 cites W1975818108 @default.
- W3112702945 cites W1977507324 @default.
- W3112702945 cites W1980966648 @default.
- W3112702945 cites W1991161277 @default.
- W3112702945 cites W1996728935 @default.
- W3112702945 cites W2014794090 @default.
- W3112702945 cites W2016037885 @default.
- W3112702945 cites W2020693741 @default.
- W3112702945 cites W2020763685 @default.
- W3112702945 cites W2021596910 @default.
- W3112702945 cites W2022305249 @default.
- W3112702945 cites W2036982386 @default.
- W3112702945 cites W2047378501 @default.
- W3112702945 cites W2050771246 @default.
- W3112702945 cites W2059850618 @default.
- W3112702945 cites W2060661883 @default.
- W3112702945 cites W2060777962 @default.
- W3112702945 cites W2066871293 @default.
- W3112702945 cites W2076063813 @default.
- W3112702945 cites W2082107925 @default.
- W3112702945 cites W2090176022 @default.
- W3112702945 cites W2097152432 @default.
- W3112702945 cites W2103146779 @default.
- W3112702945 cites W2104154919 @default.
- W3112702945 cites W2106516566 @default.
- W3112702945 cites W2108436931 @default.
- W3112702945 cites W2116884240 @default.
- W3112702945 cites W2124437815 @default.
- W3112702945 cites W2126684707 @default.
- W3112702945 cites W2128338591 @default.
- W3112702945 cites W2132097689 @default.
- W3112702945 cites W2144516479 @default.
- W3112702945 cites W2151400635 @default.
- W3112702945 cites W2154008884 @default.
- W3112702945 cites W2156257598 @default.
- W3112702945 cites W2164183644 @default.
- W3112702945 cites W2165066932 @default.
- W3112702945 cites W2165725695 @default.
- W3112702945 cites W2206026147 @default.
- W3112702945 cites W2232870322 @default.
- W3112702945 cites W2241445357 @default.
- W3112702945 cites W2305291328 @default.
- W3112702945 cites W2313317184 @default.
- W3112702945 cites W2325408928 @default.
- W3112702945 cites W2512160776 @default.
- W3112702945 cites W2552390328 @default.
- W3112702945 cites W2580060826 @default.
- W3112702945 cites W2607541615 @default.
- W3112702945 cites W2632538366 @default.
- W3112702945 cites W2751772126 @default.
- W3112702945 cites W2767949765 @default.
- W3112702945 cites W2790113762 @default.
- W3112702945 cites W2791059564 @default.
- W3112702945 cites W2900414525 @default.
- W3112702945 cites W2913346170 @default.
- W3112702945 cites W300869227 @default.
- W3112702945 cites W3104586361 @default.
- W3112702945 cites W3121438048 @default.
- W3112702945 cites W4236085280 @default.
- W3112702945 cites W4249855545 @default.
- W3112702945 cites W589911694 @default.
- W3112702945 doi "https://doi.org/10.3138/cjccj.2020-0011" @default.
- W3112702945 hasPublicationYear "2020" @default.
- W3112702945 type Work @default.
- W3112702945 sameAs 3112702945 @default.
- W3112702945 citedByCount "0" @default.
- W3112702945 crossrefType "journal-article" @default.
- W3112702945 hasAuthorship W3112702945A5032851978 @default.
- W3112702945 hasAuthorship W3112702945A5040012343 @default.
- W3112702945 hasAuthorship W3112702945A5051874628 @default.
- W3112702945 hasAuthorship W3112702945A5052817951 @default.
- W3112702945 hasAuthorship W3112702945A5065418889 @default.
- W3112702945 hasAuthorship W3112702945A5087515966 @default.
- W3112702945 hasAuthorship W3112702945A5088695218 @default.
- W3112702945 hasConcept C119857082 @default.
- W3112702945 hasConcept C132010649 @default.
- W3112702945 hasConcept C154945302 @default.
- W3112702945 hasConcept C15744967 @default.
- W3112702945 hasConcept C17744445 @default.
- W3112702945 hasConcept C188147891 @default.
- W3112702945 hasConcept C199539241 @default.