Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112730968> ?p ?o ?g. }
- W3112730968 endingPage "296" @default.
- W3112730968 startingPage "278" @default.
- W3112730968 abstract "Abstract Ground reference data are an essential prerequisite for supervised crop mapping. The lack of a low-cost and efficient ground referencing method results in pervasively limited reference data and hinders crop classification. In this study, we apply a convolutional neural network (CNN) model to explore the efficacy of automatic ground truthing via Google Street View (GSV) images in two distinct farming regions: Illinois and the Central Valley in California. We demonstrate the feasibility and reliability of our new ground referencing technique by performing pixel-based crop mapping at the state level using the cloud-based Google Earth Engine platform. The mapping results are evaluated using the United States Department of Agriculture (USDA) crop data layer (CDL) products. From ~ 130,000 GSV images, the CNN model identified ~ 9,400 target crop images. These images are well classified into crop types, including alfalfa, almond, corn, cotton, grape, rice, soybean, and pistachio. The overall GSV image classification accuracy is 92% for the Central Valley and 97% for Illinois. Subsequently, we shifted the image geographical coordinates 2–3 times in a certain direction to produce 31,829 crop reference points: 17,358 in Illinois, and 14,471 in the Central Valley. Evaluation of the mapping results with CDL products revealed satisfactory coherence. GSV-derived mapping results capture the general pattern of crop type distributions for 2011–2019. The overall agreement between CDL products and our mapping results is indicated by R2 values of 0.44–0.99 for the Central Valley and 0.81–0.98 for Illinois. To show the applicational value of the proposed method in other countries, we further mapped rice paddy (2014–2018) in South Korea which yielded fairly well outcomes (R2 = 0.91). These results indicate that GSV images used with a deep learning model offer an efficient and cost-effective alternative method for ground referencing, in many regions of the world." @default.
- W3112730968 created "2020-12-21" @default.
- W3112730968 creator A5053524205 @default.
- W3112730968 creator A5066315312 @default.
- W3112730968 date "2021-01-01" @default.
- W3112730968 modified "2023-10-16" @default.
- W3112730968 title "Exploring Google Street View with deep learning for crop type mapping" @default.
- W3112730968 cites W1963809378 @default.
- W3112730968 cites W1967400946 @default.
- W3112730968 cites W1971631718 @default.
- W3112730968 cites W1988117407 @default.
- W3112730968 cites W1989750313 @default.
- W3112730968 cites W2001510610 @default.
- W3112730968 cites W2008085934 @default.
- W3112730968 cites W2021524677 @default.
- W3112730968 cites W2030165874 @default.
- W3112730968 cites W2033309242 @default.
- W3112730968 cites W2042692910 @default.
- W3112730968 cites W2063623478 @default.
- W3112730968 cites W2072465375 @default.
- W3112730968 cites W2084296691 @default.
- W3112730968 cites W2086823339 @default.
- W3112730968 cites W2089564362 @default.
- W3112730968 cites W2099507093 @default.
- W3112730968 cites W2118096631 @default.
- W3112730968 cites W2155632266 @default.
- W3112730968 cites W2235201318 @default.
- W3112730968 cites W2283002322 @default.
- W3112730968 cites W2290326488 @default.
- W3112730968 cites W2438450043 @default.
- W3112730968 cites W2539651710 @default.
- W3112730968 cites W2588898775 @default.
- W3112730968 cites W2593685093 @default.
- W3112730968 cites W2605847660 @default.
- W3112730968 cites W2607245364 @default.
- W3112730968 cites W2610947800 @default.
- W3112730968 cites W2613571842 @default.
- W3112730968 cites W2625259639 @default.
- W3112730968 cites W2648242067 @default.
- W3112730968 cites W2725897987 @default.
- W3112730968 cites W2730238284 @default.
- W3112730968 cites W2757637497 @default.
- W3112730968 cites W2763734094 @default.
- W3112730968 cites W2770820547 @default.
- W3112730968 cites W2791592925 @default.
- W3112730968 cites W2810242891 @default.
- W3112730968 cites W2895924848 @default.
- W3112730968 cites W2900849519 @default.
- W3112730968 cites W2903282641 @default.
- W3112730968 cites W2909728654 @default.
- W3112730968 cites W2912682610 @default.
- W3112730968 cites W2943325261 @default.
- W3112730968 cites W2944019945 @default.
- W3112730968 cites W2973353633 @default.
- W3112730968 cites W3027438872 @default.
- W3112730968 cites W3087578562 @default.
- W3112730968 doi "https://doi.org/10.1016/j.isprsjprs.2020.11.022" @default.
- W3112730968 hasPublicationYear "2021" @default.
- W3112730968 type Work @default.
- W3112730968 sameAs 3112730968 @default.
- W3112730968 citedByCount "38" @default.
- W3112730968 countsByYear W31127309682021 @default.
- W3112730968 countsByYear W31127309682022 @default.
- W3112730968 countsByYear W31127309682023 @default.
- W3112730968 crossrefType "journal-article" @default.
- W3112730968 hasAuthorship W3112730968A5053524205 @default.
- W3112730968 hasAuthorship W3112730968A5066315312 @default.
- W3112730968 hasConcept C108583219 @default.
- W3112730968 hasConcept C154945302 @default.
- W3112730968 hasConcept C18903297 @default.
- W3112730968 hasConcept C205649164 @default.
- W3112730968 hasConcept C2777299769 @default.
- W3112730968 hasConcept C41008148 @default.
- W3112730968 hasConcept C58640448 @default.
- W3112730968 hasConcept C86803240 @default.
- W3112730968 hasConceptScore W3112730968C108583219 @default.
- W3112730968 hasConceptScore W3112730968C154945302 @default.
- W3112730968 hasConceptScore W3112730968C18903297 @default.
- W3112730968 hasConceptScore W3112730968C205649164 @default.
- W3112730968 hasConceptScore W3112730968C2777299769 @default.
- W3112730968 hasConceptScore W3112730968C41008148 @default.
- W3112730968 hasConceptScore W3112730968C58640448 @default.
- W3112730968 hasConceptScore W3112730968C86803240 @default.
- W3112730968 hasFunder F4320322035 @default.
- W3112730968 hasLocation W31127309681 @default.
- W3112730968 hasOpenAccess W3112730968 @default.
- W3112730968 hasPrimaryLocation W31127309681 @default.
- W3112730968 hasRelatedWork W2126887587 @default.
- W3112730968 hasRelatedWork W2731899572 @default.
- W3112730968 hasRelatedWork W2748952813 @default.
- W3112730968 hasRelatedWork W2899084033 @default.
- W3112730968 hasRelatedWork W2939353110 @default.
- W3112730968 hasRelatedWork W2941846814 @default.
- W3112730968 hasRelatedWork W2948658236 @default.
- W3112730968 hasRelatedWork W3009238340 @default.
- W3112730968 hasRelatedWork W3215138031 @default.
- W3112730968 hasRelatedWork W4230611425 @default.
- W3112730968 hasVolume "171" @default.