Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112784773> ?p ?o ?g. }
- W3112784773 endingPage "2045" @default.
- W3112784773 startingPage "2045" @default.
- W3112784773 abstract "Owing to the importance of coalbed methane (CBM) as a source of energy, it is necessary to predict its future production. However, the production process of CBM is the result of the interaction of many factors, making it difficult to perform accurate simulations through mathematical models. We must therefore rely on the historical data of CBM production to understand its inherent features and predict its future performance. The objective of this paper is to establish a deep learning prediction method for coalbed methane production without considering complex geological factors. In this paper, we propose a multivariate long short-term memory neural network (M-LSTM NN) model to predict CBM production. We tested the performance of this model using the production data of CBM wells in the Panhe Demonstration Area in the Qinshui Basin of China. The production of different CBM wells has similar characteristics in time. We can use the symmetric similarity of the data to transfer the model to the production forecasting of different CBM wells. Our results demonstrate that the M-LSTM NN model, utilizing the historical yield data of CBM as well as other auxiliary information such as casing pressures, water production levels, and bottom hole temperatures (including the highest and lowest temperatures), can predict CBM production successfully while obtaining a mean absolute percentage error (MAPE) of 0.91%. This is an improvement when compared with the traditional LSTM NN model, which has an MAPE of 1.14%. In addition to this, we conducted multi-step predictions at a daily and monthly scale and obtained similar results. It should be noted that with an increase in time lag, the prediction performance became less accurate. At the daily level, the MAPE value increased from 0.24% to 2.09% over 10 successive days. The predictions on the monthly scale also saw an increase in the MAPE value from 2.68% to 5.95% over three months. This tendency suggests that long-term forecasts are more difficult than short-term ones, and more historical data are required to produce more accurate results." @default.
- W3112784773 created "2020-12-21" @default.
- W3112784773 creator A5037023585 @default.
- W3112784773 creator A5047884387 @default.
- W3112784773 creator A5048813928 @default.
- W3112784773 creator A5057042069 @default.
- W3112784773 creator A5073905856 @default.
- W3112784773 date "2020-12-10" @default.
- W3112784773 modified "2023-10-06" @default.
- W3112784773 title "A Multivariate Long Short-Term Memory Neural Network for Coalbed Methane Production Forecasting" @default.
- W3112784773 cites W1868856169 @default.
- W3112784773 cites W1981780459 @default.
- W3112784773 cites W1995985617 @default.
- W3112784773 cites W2004353783 @default.
- W3112784773 cites W2030544092 @default.
- W3112784773 cites W2038960401 @default.
- W3112784773 cites W2043974102 @default.
- W3112784773 cites W2044095948 @default.
- W3112784773 cites W2061368533 @default.
- W3112784773 cites W2066257999 @default.
- W3112784773 cites W2070803488 @default.
- W3112784773 cites W2071451427 @default.
- W3112784773 cites W2090389223 @default.
- W3112784773 cites W2573587735 @default.
- W3112784773 cites W2617137613 @default.
- W3112784773 cites W2624385633 @default.
- W3112784773 cites W2760506659 @default.
- W3112784773 cites W2789364533 @default.
- W3112784773 cites W2791089876 @default.
- W3112784773 cites W2792688943 @default.
- W3112784773 cites W2802586787 @default.
- W3112784773 cites W2809170977 @default.
- W3112784773 cites W2857597782 @default.
- W3112784773 cites W2884688365 @default.
- W3112784773 cites W2889230014 @default.
- W3112784773 cites W2894821558 @default.
- W3112784773 cites W2899742462 @default.
- W3112784773 cites W2900682747 @default.
- W3112784773 cites W2905872298 @default.
- W3112784773 cites W2912189257 @default.
- W3112784773 cites W2995690110 @default.
- W3112784773 cites W3023906501 @default.
- W3112784773 cites W3028303095 @default.
- W3112784773 cites W3086659379 @default.
- W3112784773 cites W3104804488 @default.
- W3112784773 cites W4234423208 @default.
- W3112784773 doi "https://doi.org/10.3390/sym12122045" @default.
- W3112784773 hasPublicationYear "2020" @default.
- W3112784773 type Work @default.
- W3112784773 sameAs 3112784773 @default.
- W3112784773 citedByCount "3" @default.
- W3112784773 countsByYear W31127847732022 @default.
- W3112784773 countsByYear W31127847732023 @default.
- W3112784773 crossrefType "journal-article" @default.
- W3112784773 hasAuthorship W3112784773A5037023585 @default.
- W3112784773 hasAuthorship W3112784773A5047884387 @default.
- W3112784773 hasAuthorship W3112784773A5048813928 @default.
- W3112784773 hasAuthorship W3112784773A5057042069 @default.
- W3112784773 hasAuthorship W3112784773A5073905856 @default.
- W3112784773 hasBestOaLocation W31127847731 @default.
- W3112784773 hasConcept C108615695 @default.
- W3112784773 hasConcept C119857082 @default.
- W3112784773 hasConcept C124101348 @default.
- W3112784773 hasConcept C127313418 @default.
- W3112784773 hasConcept C127413603 @default.
- W3112784773 hasConcept C139719470 @default.
- W3112784773 hasConcept C150217764 @default.
- W3112784773 hasConcept C154945302 @default.
- W3112784773 hasConcept C161584116 @default.
- W3112784773 hasConcept C162324750 @default.
- W3112784773 hasConcept C2776469828 @default.
- W3112784773 hasConcept C2778348673 @default.
- W3112784773 hasConcept C41008148 @default.
- W3112784773 hasConcept C50644808 @default.
- W3112784773 hasConcept C518851703 @default.
- W3112784773 hasConcept C548081761 @default.
- W3112784773 hasConcept C78762247 @default.
- W3112784773 hasConceptScore W3112784773C108615695 @default.
- W3112784773 hasConceptScore W3112784773C119857082 @default.
- W3112784773 hasConceptScore W3112784773C124101348 @default.
- W3112784773 hasConceptScore W3112784773C127313418 @default.
- W3112784773 hasConceptScore W3112784773C127413603 @default.
- W3112784773 hasConceptScore W3112784773C139719470 @default.
- W3112784773 hasConceptScore W3112784773C150217764 @default.
- W3112784773 hasConceptScore W3112784773C154945302 @default.
- W3112784773 hasConceptScore W3112784773C161584116 @default.
- W3112784773 hasConceptScore W3112784773C162324750 @default.
- W3112784773 hasConceptScore W3112784773C2776469828 @default.
- W3112784773 hasConceptScore W3112784773C2778348673 @default.
- W3112784773 hasConceptScore W3112784773C41008148 @default.
- W3112784773 hasConceptScore W3112784773C50644808 @default.
- W3112784773 hasConceptScore W3112784773C518851703 @default.
- W3112784773 hasConceptScore W3112784773C548081761 @default.
- W3112784773 hasConceptScore W3112784773C78762247 @default.
- W3112784773 hasIssue "12" @default.
- W3112784773 hasLocation W31127847731 @default.
- W3112784773 hasLocation W31127847732 @default.
- W3112784773 hasOpenAccess W3112784773 @default.