Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112792461> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3112792461 endingPage "103830" @default.
- W3112792461 startingPage "103830" @default.
- W3112792461 abstract "Coastal structures are often designed to a maximum allowable wave overtopping discharge, hence accurate prediction of the amount of wave overtopping is an important issue. Both empirical formulae and neural networks are among the commonly used prediction tools. In this work, a new model for the prediction of mean wave overtopping discharge is presented using the innovative machine learning technique XGBoost. The selection of features to train the model on is carefully substantiated, including the redefinition of existing features to obtain a better model performance. Confidence intervals are derived by tuning hyperparameters and applying bootstrap resampling. The quality of the model is tested against four new physical model data sets, and a thorough quantitative comparison with existing machine learning methods and empirical overtopping formulae is presented. The XGBoost model generally outperforms other methods for the test data sets with normally incident waves. All data-driven methods show less accuracy on oblique wave data, presumably because these conditions are underrepresented in the training data. The performance of the XGBoost model is significantly improved by adding a randomly selected part of the new oblique wave cases to the training data. In the end, this new model is shown to reduce errors on all data used in this work with a factor of up to 5 compared to existing overtopping prediction methods." @default.
- W3112792461 created "2020-12-21" @default.
- W3112792461 creator A5039716602 @default.
- W3112792461 creator A5049082219 @default.
- W3112792461 creator A5074957520 @default.
- W3112792461 date "2021-06-01" @default.
- W3112792461 modified "2023-10-18" @default.
- W3112792461 title "Wave overtopping predictions using an advanced machine learning technique" @default.
- W3112792461 cites W1984035304 @default.
- W3112792461 cites W1995631682 @default.
- W3112792461 cites W1997124685 @default.
- W3112792461 cites W2524353561 @default.
- W3112792461 cites W2795411881 @default.
- W3112792461 cites W2896815160 @default.
- W3112792461 cites W2911964244 @default.
- W3112792461 cites W2942857703 @default.
- W3112792461 cites W2945701190 @default.
- W3112792461 cites W2994606147 @default.
- W3112792461 cites W3035609075 @default.
- W3112792461 cites W3035740221 @default.
- W3112792461 cites W3036095825 @default.
- W3112792461 doi "https://doi.org/10.1016/j.coastaleng.2020.103830" @default.
- W3112792461 hasPublicationYear "2021" @default.
- W3112792461 type Work @default.
- W3112792461 sameAs 3112792461 @default.
- W3112792461 citedByCount "28" @default.
- W3112792461 countsByYear W31127924612021 @default.
- W3112792461 countsByYear W31127924612022 @default.
- W3112792461 countsByYear W31127924612023 @default.
- W3112792461 crossrefType "journal-article" @default.
- W3112792461 hasAuthorship W3112792461A5039716602 @default.
- W3112792461 hasAuthorship W3112792461A5049082219 @default.
- W3112792461 hasAuthorship W3112792461A5074957520 @default.
- W3112792461 hasBestOaLocation W31127924612 @default.
- W3112792461 hasConcept C111368507 @default.
- W3112792461 hasConcept C119857082 @default.
- W3112792461 hasConcept C124101348 @default.
- W3112792461 hasConcept C127313418 @default.
- W3112792461 hasConcept C138885662 @default.
- W3112792461 hasConcept C150921843 @default.
- W3112792461 hasConcept C154945302 @default.
- W3112792461 hasConcept C160697094 @default.
- W3112792461 hasConcept C41008148 @default.
- W3112792461 hasConcept C41895202 @default.
- W3112792461 hasConcept C50644808 @default.
- W3112792461 hasConcept C70620910 @default.
- W3112792461 hasConcept C8642999 @default.
- W3112792461 hasConceptScore W3112792461C111368507 @default.
- W3112792461 hasConceptScore W3112792461C119857082 @default.
- W3112792461 hasConceptScore W3112792461C124101348 @default.
- W3112792461 hasConceptScore W3112792461C127313418 @default.
- W3112792461 hasConceptScore W3112792461C138885662 @default.
- W3112792461 hasConceptScore W3112792461C150921843 @default.
- W3112792461 hasConceptScore W3112792461C154945302 @default.
- W3112792461 hasConceptScore W3112792461C160697094 @default.
- W3112792461 hasConceptScore W3112792461C41008148 @default.
- W3112792461 hasConceptScore W3112792461C41895202 @default.
- W3112792461 hasConceptScore W3112792461C50644808 @default.
- W3112792461 hasConceptScore W3112792461C70620910 @default.
- W3112792461 hasConceptScore W3112792461C8642999 @default.
- W3112792461 hasLocation W31127924611 @default.
- W3112792461 hasLocation W31127924612 @default.
- W3112792461 hasOpenAccess W3112792461 @default.
- W3112792461 hasPrimaryLocation W31127924611 @default.
- W3112792461 hasRelatedWork W2052515325 @default.
- W3112792461 hasRelatedWork W2140186469 @default.
- W3112792461 hasRelatedWork W2775233965 @default.
- W3112792461 hasRelatedWork W3183136280 @default.
- W3112792461 hasRelatedWork W4280563792 @default.
- W3112792461 hasRelatedWork W4311551265 @default.
- W3112792461 hasRelatedWork W4318559728 @default.
- W3112792461 hasRelatedWork W4318719684 @default.
- W3112792461 hasRelatedWork W4360995913 @default.
- W3112792461 hasRelatedWork W4381707502 @default.
- W3112792461 hasVolume "166" @default.
- W3112792461 isParatext "false" @default.
- W3112792461 isRetracted "false" @default.
- W3112792461 magId "3112792461" @default.
- W3112792461 workType "article" @default.