Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112801116> ?p ?o ?g. }
- W3112801116 endingPage "870" @default.
- W3112801116 startingPage "852" @default.
- W3112801116 abstract "Purpose To investigate via Monte Carlo simulations, the impact of scan subject size, antiscatter grid (ASG), collimator size, and bowtie filter on the distribution of scatter radiation in a typical realistically modeled third generation 16 slice diagnostic computed tomography (CT) scanner. Methods Full radiation transport was simulated with Geant4 in a realistic CT scanner geometric model, including the imaging phantom, bowtie filter (BTF), collimators and detector assembly, except for the ASGs. An analytical method was employed to quantify the probable transmission through the ASG of each photon intersecting the detector array. Normalized scatter profiles (NSP) and scatter‐to‐primary‐ratio (SPR) profiles were simulated for 90 and 140 kVp beams for different size phantoms and slice thicknesses. The impact of CT scatter on the reconstructed attenuation coefficient factor was also studied as were the modulating effects of phantom‐ and patient‐tissue heterogeneities on scatter profiles. A method to characterize the relative spatial frequency content of sinogram signals was developed to assess the latter. Results For the 21.4‐cm diameter phantom, NSP and SPR increase linearly with collimator opening for both tube potentials, with the 90 kVp scan exhibiting slightly larger NSP and SPR. The BTF modestly modulates scatter under the phantom center, reducing the prominent off‐axis lobes by factors of 1.1–1.3. The ASG reduces scatter on the central axis NSP threefold, and reduces scatter at the detectors outside the phantom shadow by factors of 25 to 500. For the phantoms with diameters of 27 and 32 cm, the scatter increases roughly three‐ and fourfold, respectively, demonstrating that scatter monotonically increases with phantom size, despite deployment of the ASG and BTF. In the absence of a scan subject, the ASG reduces the signal profile arising photons scattered by the BTF. Without ASG, the in‐air scatter profile is relatively flat compared to the scatter profile when the ASG is present. For both 90 and 140 kVp photon spectra, the calculated attenuation coefficient decreases linearly with increasing collimation size. For both homogeneous and heterogeneous objects, NSPs are dominated by low spatial frequency content compared to the primary signal. However, the SPR, which quantifies the local magnitude of nonlinear detector response and is dominated by the high frequency content of the primary profile, can contribute strongly to high‐spatial frequency streaking artifacts near high‐density structures in reconstructed image artifacts. Conclusion Public‐domain Monte Carlo codes, Geant‐4 in particular, is a feasible method for characterizing CT detector response to scattered‐ and off‐focal radiation. Our study demonstrates that the ASG substantially reduces the scatter radiation and reshapes scatter‐radiation profiles and affects the accuracy with which the detector array can measure narrow‐beam attenuation due its inability to distinguish between true uncollided primary and narrow‐angle coherently scattered photons. Hence, incorporating the impact of detector array collimation into the forward‐projection signal formation models used by iterative reconstruction algorithms is necessary to use CT for accurately characterizing material properties. While tissue heterogeneities exercise a modest influence on local NPS shape and magnitude, they do not add significant high spatial frequency content." @default.
- W3112801116 created "2020-12-21" @default.
- W3112801116 creator A5003751870 @default.
- W3112801116 creator A5027067675 @default.
- W3112801116 creator A5032752677 @default.
- W3112801116 creator A5044333105 @default.
- W3112801116 creator A5072453051 @default.
- W3112801116 creator A5073673935 @default.
- W3112801116 creator A5083558440 @default.
- W3112801116 creator A5087321413 @default.
- W3112801116 date "2020-12-23" @default.
- W3112801116 modified "2023-10-02" @default.
- W3112801116 title "Impact of bowtie filter and detector collimation on multislice CT scatter profiles: A simulation study" @default.
- W3112801116 cites W1037295846 @default.
- W3112801116 cites W1964760340 @default.
- W3112801116 cites W1971164950 @default.
- W3112801116 cites W1976799975 @default.
- W3112801116 cites W1977129414 @default.
- W3112801116 cites W1977722414 @default.
- W3112801116 cites W1981020690 @default.
- W3112801116 cites W1984473139 @default.
- W3112801116 cites W1984963254 @default.
- W3112801116 cites W1985893123 @default.
- W3112801116 cites W1990869665 @default.
- W3112801116 cites W1993132496 @default.
- W3112801116 cites W1997073465 @default.
- W3112801116 cites W1998169466 @default.
- W3112801116 cites W1999319995 @default.
- W3112801116 cites W2000232210 @default.
- W3112801116 cites W2000352965 @default.
- W3112801116 cites W2002057038 @default.
- W3112801116 cites W2002527586 @default.
- W3112801116 cites W2017322407 @default.
- W3112801116 cites W2017401048 @default.
- W3112801116 cites W2025257312 @default.
- W3112801116 cites W2037975412 @default.
- W3112801116 cites W2038259880 @default.
- W3112801116 cites W2038493543 @default.
- W3112801116 cites W2043193153 @default.
- W3112801116 cites W2044794159 @default.
- W3112801116 cites W2056376565 @default.
- W3112801116 cites W2060193743 @default.
- W3112801116 cites W2060434533 @default.
- W3112801116 cites W2060712246 @default.
- W3112801116 cites W2062980565 @default.
- W3112801116 cites W2064943549 @default.
- W3112801116 cites W2065646652 @default.
- W3112801116 cites W2065723520 @default.
- W3112801116 cites W2072021306 @default.
- W3112801116 cites W2073116238 @default.
- W3112801116 cites W2075735863 @default.
- W3112801116 cites W2088503332 @default.
- W3112801116 cites W2088909704 @default.
- W3112801116 cites W2090162673 @default.
- W3112801116 cites W2115988123 @default.
- W3112801116 cites W2118916039 @default.
- W3112801116 cites W2119350028 @default.
- W3112801116 cites W2121293785 @default.
- W3112801116 cites W2128158076 @default.
- W3112801116 cites W2134840797 @default.
- W3112801116 cites W2138237558 @default.
- W3112801116 cites W2148726775 @default.
- W3112801116 cites W2150286687 @default.
- W3112801116 cites W2170608748 @default.
- W3112801116 cites W2186648347 @default.
- W3112801116 cites W2485703739 @default.
- W3112801116 cites W2547705651 @default.
- W3112801116 cites W2556921464 @default.
- W3112801116 cites W2592665241 @default.
- W3112801116 cites W2747220657 @default.
- W3112801116 cites W2780559103 @default.
- W3112801116 cites W2790075359 @default.
- W3112801116 cites W2801656193 @default.
- W3112801116 cites W2901935778 @default.
- W3112801116 cites W2918621307 @default.
- W3112801116 cites W3105613014 @default.
- W3112801116 doi "https://doi.org/10.1002/mp.14652" @default.
- W3112801116 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33296513" @default.
- W3112801116 hasPublicationYear "2020" @default.
- W3112801116 type Work @default.
- W3112801116 sameAs 3112801116 @default.
- W3112801116 citedByCount "3" @default.
- W3112801116 countsByYear W31128011162021 @default.
- W3112801116 countsByYear W31128011162022 @default.
- W3112801116 crossrefType "journal-article" @default.
- W3112801116 hasAuthorship W3112801116A5003751870 @default.
- W3112801116 hasAuthorship W3112801116A5027067675 @default.
- W3112801116 hasAuthorship W3112801116A5032752677 @default.
- W3112801116 hasAuthorship W3112801116A5044333105 @default.
- W3112801116 hasAuthorship W3112801116A5072453051 @default.
- W3112801116 hasAuthorship W3112801116A5073673935 @default.
- W3112801116 hasAuthorship W3112801116A5083558440 @default.
- W3112801116 hasAuthorship W3112801116A5087321413 @default.
- W3112801116 hasConcept C104293457 @default.
- W3112801116 hasConcept C105795698 @default.
- W3112801116 hasConcept C106131492 @default.
- W3112801116 hasConcept C120665830 @default.
- W3112801116 hasConcept C121332964 @default.