Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112808112> ?p ?o ?g. }
- W3112808112 endingPage "880" @default.
- W3112808112 startingPage "856" @default.
- W3112808112 abstract "Across many fields of social science, machine learning (ML) algorithms are rapidly advancing research as tools to support traditional hypothesis testing research (e.g., through data reduction and automation of data coding or for improving matching on observable features of a phenomenon or constructing instrumental variables). In this paper, we argue that researchers are yet to recognize the value of ML techniques for theory building from data. This may be in part because of scholars’ inherent distaste for predictions without explanations that ML algorithms are known to produce. However, precisely because of this property, we argue that ML techniques can be very useful in theory construction during a key step of inductive theorizing—pattern detection. ML can facilitate algorithm supported induction, yielding conclusions about patterns in data that are likely to be robustly replicable by other analysts and in other samples from the same population. These patterns can then be used as inputs to abductive reasoning for building or developing theories that explain them. We propose that algorithm-supported induction is valuable for researchers interested in using quantitative data to both develop and test theories in a transparent and reproducible manner, and we illustrate our arguments using simulations." @default.
- W3112808112 created "2020-12-21" @default.
- W3112808112 creator A5015167951 @default.
- W3112808112 creator A5043846392 @default.
- W3112808112 creator A5064346361 @default.
- W3112808112 creator A5070211223 @default.
- W3112808112 date "2021-05-01" @default.
- W3112808112 modified "2023-10-05" @default.
- W3112808112 title "Algorithm Supported Induction for Building Theory: How Can We Use Prediction Models to Theorize?" @default.
- W3112808112 cites W158063123 @default.
- W3112808112 cites W1799410249 @default.
- W3112808112 cites W1887369574 @default.
- W3112808112 cites W1965620617 @default.
- W3112808112 cites W1981740417 @default.
- W3112808112 cites W1984365387 @default.
- W3112808112 cites W2001606006 @default.
- W3112808112 cites W2003588506 @default.
- W3112808112 cites W2007651704 @default.
- W3112808112 cites W2007769717 @default.
- W3112808112 cites W2014134373 @default.
- W3112808112 cites W2018863071 @default.
- W3112808112 cites W2025587182 @default.
- W3112808112 cites W2066400615 @default.
- W3112808112 cites W2069946274 @default.
- W3112808112 cites W2086646772 @default.
- W3112808112 cites W2088900896 @default.
- W3112808112 cites W2116253140 @default.
- W3112808112 cites W2116441659 @default.
- W3112808112 cites W2120846249 @default.
- W3112808112 cites W2126129668 @default.
- W3112808112 cites W2131030679 @default.
- W3112808112 cites W2131587748 @default.
- W3112808112 cites W2133914847 @default.
- W3112808112 cites W2135046866 @default.
- W3112808112 cites W2139067007 @default.
- W3112808112 cites W2146016545 @default.
- W3112808112 cites W2151554678 @default.
- W3112808112 cites W2155419203 @default.
- W3112808112 cites W2160824456 @default.
- W3112808112 cites W2171566342 @default.
- W3112808112 cites W2174706414 @default.
- W3112808112 cites W2180402181 @default.
- W3112808112 cites W2182461851 @default.
- W3112808112 cites W2203167467 @default.
- W3112808112 cites W2305754340 @default.
- W3112808112 cites W2322006099 @default.
- W3112808112 cites W2557088923 @default.
- W3112808112 cites W2560223852 @default.
- W3112808112 cites W2568988948 @default.
- W3112808112 cites W2610886376 @default.
- W3112808112 cites W2614303240 @default.
- W3112808112 cites W2620760558 @default.
- W3112808112 cites W2624385633 @default.
- W3112808112 cites W2791780780 @default.
- W3112808112 cites W2791962711 @default.
- W3112808112 cites W2794737734 @default.
- W3112808112 cites W2795349040 @default.
- W3112808112 cites W2906095734 @default.
- W3112808112 cites W2911964244 @default.
- W3112808112 cites W2916856776 @default.
- W3112808112 cites W2919115771 @default.
- W3112808112 cites W2943121181 @default.
- W3112808112 cites W2960630842 @default.
- W3112808112 cites W2962727190 @default.
- W3112808112 cites W2962772482 @default.
- W3112808112 cites W2964049691 @default.
- W3112808112 cites W2973474224 @default.
- W3112808112 cites W3123397884 @default.
- W3112808112 cites W3124814550 @default.
- W3112808112 cites W3198350258 @default.
- W3112808112 cites W4233750716 @default.
- W3112808112 cites W4236362309 @default.
- W3112808112 cites W4237288401 @default.
- W3112808112 doi "https://doi.org/10.1287/orsc.2020.1382" @default.
- W3112808112 hasPublicationYear "2021" @default.
- W3112808112 type Work @default.
- W3112808112 sameAs 3112808112 @default.
- W3112808112 citedByCount "29" @default.
- W3112808112 countsByYear W31128081122021 @default.
- W3112808112 countsByYear W31128081122022 @default.
- W3112808112 countsByYear W31128081122023 @default.
- W3112808112 crossrefType "journal-article" @default.
- W3112808112 hasAuthorship W3112808112A5015167951 @default.
- W3112808112 hasAuthorship W3112808112A5043846392 @default.
- W3112808112 hasAuthorship W3112808112A5064346361 @default.
- W3112808112 hasAuthorship W3112808112A5070211223 @default.
- W3112808112 hasBestOaLocation W31128081122 @default.
- W3112808112 hasConcept C105795698 @default.
- W3112808112 hasConcept C119857082 @default.
- W3112808112 hasConcept C154945302 @default.
- W3112808112 hasConcept C162324750 @default.
- W3112808112 hasConcept C162919384 @default.
- W3112808112 hasConcept C165064840 @default.
- W3112808112 hasConcept C179518139 @default.
- W3112808112 hasConcept C21563000 @default.
- W3112808112 hasConcept C2522767166 @default.
- W3112808112 hasConcept C26517878 @default.
- W3112808112 hasConcept C2776291640 @default.