Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112843145> ?p ?o ?g. }
- W3112843145 endingPage "6512" @default.
- W3112843145 startingPage "6512" @default.
- W3112843145 abstract "Due to the intermittent nature of solar energy, accurate photovoltaic power predictions are very important for energy integration into existing energy systems. The evolution of deep learning has also opened the possibility to apply neural network models to predict time series, achieving excellent results. In this paper, a five layer CNN-LSTM model is proposed for photovoltaic power predictions using real data from a location in Temixco, Morelos in Mexico. In the proposed hybrid model, the convolutional layer acts like a filter, extracting local features of the data; then the temporal features are extracted by the long short-term memory network. Finally, the performance of the hybrid model with five layers is compared with a single model (a single LSTM), a CNN-LSTM hybrid model with two layers and two well known popular benchmarks. The results also shows that the hybrid neural network model has better prediction effect than the two layer hybrid model, the single prediction model, the Lasso regression or the Ridge regression." @default.
- W3112843145 created "2020-12-21" @default.
- W3112843145 creator A5068979761 @default.
- W3112843145 creator A5074673897 @default.
- W3112843145 creator A5086854779 @default.
- W3112843145 date "2020-12-10" @default.
- W3112843145 modified "2023-10-18" @default.
- W3112843145 title "PV Power Prediction, Using CNN-LSTM Hybrid Neural Network Model. Case of Study: Temixco-Morelos, México" @default.
- W3112843145 cites W2064675550 @default.
- W3112843145 cites W2096463747 @default.
- W3112843145 cites W2508429489 @default.
- W3112843145 cites W2569349941 @default.
- W3112843145 cites W2594562030 @default.
- W3112843145 cites W2607686132 @default.
- W3112843145 cites W2629433172 @default.
- W3112843145 cites W2750021257 @default.
- W3112843145 cites W2760948241 @default.
- W3112843145 cites W2773629498 @default.
- W3112843145 cites W2896248501 @default.
- W3112843145 cites W2897279290 @default.
- W3112843145 cites W2914182690 @default.
- W3112843145 cites W2916536710 @default.
- W3112843145 cites W2921742197 @default.
- W3112843145 cites W2922412637 @default.
- W3112843145 cites W2941116662 @default.
- W3112843145 cites W2948490758 @default.
- W3112843145 cites W2953443747 @default.
- W3112843145 cites W2953762294 @default.
- W3112843145 cites W2977155375 @default.
- W3112843145 cites W2979947165 @default.
- W3112843145 cites W3016469679 @default.
- W3112843145 cites W3028650737 @default.
- W3112843145 cites W3043767401 @default.
- W3112843145 cites W3088638817 @default.
- W3112843145 doi "https://doi.org/10.3390/en13246512" @default.
- W3112843145 hasPublicationYear "2020" @default.
- W3112843145 type Work @default.
- W3112843145 sameAs 3112843145 @default.
- W3112843145 citedByCount "32" @default.
- W3112843145 countsByYear W31128431452021 @default.
- W3112843145 countsByYear W31128431452022 @default.
- W3112843145 countsByYear W31128431452023 @default.
- W3112843145 crossrefType "journal-article" @default.
- W3112843145 hasAuthorship W3112843145A5068979761 @default.
- W3112843145 hasAuthorship W3112843145A5074673897 @default.
- W3112843145 hasAuthorship W3112843145A5086854779 @default.
- W3112843145 hasBestOaLocation W31128431451 @default.
- W3112843145 hasConcept C105795698 @default.
- W3112843145 hasConcept C106131492 @default.
- W3112843145 hasConcept C108583219 @default.
- W3112843145 hasConcept C119599485 @default.
- W3112843145 hasConcept C119857082 @default.
- W3112843145 hasConcept C121332964 @default.
- W3112843145 hasConcept C127413603 @default.
- W3112843145 hasConcept C136764020 @default.
- W3112843145 hasConcept C147168706 @default.
- W3112843145 hasConcept C151730666 @default.
- W3112843145 hasConcept C153180895 @default.
- W3112843145 hasConcept C154945302 @default.
- W3112843145 hasConcept C163258240 @default.
- W3112843145 hasConcept C186370098 @default.
- W3112843145 hasConcept C2779990667 @default.
- W3112843145 hasConcept C31972630 @default.
- W3112843145 hasConcept C32277403 @default.
- W3112843145 hasConcept C33923547 @default.
- W3112843145 hasConcept C37616216 @default.
- W3112843145 hasConcept C41008148 @default.
- W3112843145 hasConcept C41291067 @default.
- W3112843145 hasConcept C50644808 @default.
- W3112843145 hasConcept C50897621 @default.
- W3112843145 hasConcept C62520636 @default.
- W3112843145 hasConcept C81363708 @default.
- W3112843145 hasConcept C86155754 @default.
- W3112843145 hasConcept C86803240 @default.
- W3112843145 hasConceptScore W3112843145C105795698 @default.
- W3112843145 hasConceptScore W3112843145C106131492 @default.
- W3112843145 hasConceptScore W3112843145C108583219 @default.
- W3112843145 hasConceptScore W3112843145C119599485 @default.
- W3112843145 hasConceptScore W3112843145C119857082 @default.
- W3112843145 hasConceptScore W3112843145C121332964 @default.
- W3112843145 hasConceptScore W3112843145C127413603 @default.
- W3112843145 hasConceptScore W3112843145C136764020 @default.
- W3112843145 hasConceptScore W3112843145C147168706 @default.
- W3112843145 hasConceptScore W3112843145C151730666 @default.
- W3112843145 hasConceptScore W3112843145C153180895 @default.
- W3112843145 hasConceptScore W3112843145C154945302 @default.
- W3112843145 hasConceptScore W3112843145C163258240 @default.
- W3112843145 hasConceptScore W3112843145C186370098 @default.
- W3112843145 hasConceptScore W3112843145C2779990667 @default.
- W3112843145 hasConceptScore W3112843145C31972630 @default.
- W3112843145 hasConceptScore W3112843145C32277403 @default.
- W3112843145 hasConceptScore W3112843145C33923547 @default.
- W3112843145 hasConceptScore W3112843145C37616216 @default.
- W3112843145 hasConceptScore W3112843145C41008148 @default.
- W3112843145 hasConceptScore W3112843145C41291067 @default.
- W3112843145 hasConceptScore W3112843145C50644808 @default.
- W3112843145 hasConceptScore W3112843145C50897621 @default.
- W3112843145 hasConceptScore W3112843145C62520636 @default.