Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112843499> ?p ?o ?g. }
- W3112843499 endingPage "824" @default.
- W3112843499 startingPage "801" @default.
- W3112843499 abstract "ABSTRACT A series of classical absorbing boundary conditions (ABCs), including paraxial-approximation ABCs, Liao’s multi-transmitting formula (MTF), Higdon ABCs, and some other related techniques, have the common feature that the motion of an arbitrary artificial boundary node at each timestep is directly predicted from the motions of some adjacent nodes at several previous timesteps. They are expressed in somewhat equivalent forms, contain similar control parameters, and have comparable accuracy and stability in numerical simulations. This study develops a theoretical framework called displacement-type (a more exact name would be “prediction-type” or “extrapolation-type”) local ABCs to merge these boundary conditions. The idea of this theory mainly originates from the versatility of MTF, which uses a unified formula to approximate the propagation of outgoing waves through each boundary node. This idea can be generalized to other displacement-type local ABCs to unify their expressions and to optimize their applications. These ABCs have two basic control parameters; one is the boundary order, and the other is adjustable computational wave velocities. Considering the poor performance of paraxial ABCs and the slight imperfections in MTF and Higdon ABCs, we propose two new unified formulas to be the starting points of expressing, evaluating, and applying displacement-type local ABCs. One formula is an optimized MTF by introducing various computational wave velocities. The other formula is a generalized Higdon boundary formula, which is established in a unified local coordinate and uses the adjustable computational wave velocities. The rule of choosing boundary parameters for the absorption of acoustic and elastic waves is discussed in detail. Numerical tests validate the proposed theory and formulas. Issues on numerical stability are briefly reviewed and tested in simulation examples. This is still an active research topic related to displacement-type local ABCs." @default.
- W3112843499 created "2020-12-21" @default.
- W3112843499 creator A5012094328 @default.
- W3112843499 creator A5013655445 @default.
- W3112843499 creator A5044211882 @default.
- W3112843499 creator A5064329569 @default.
- W3112843499 creator A5067623130 @default.
- W3112843499 creator A5067643272 @default.
- W3112843499 date "2020-12-08" @default.
- W3112843499 modified "2023-10-06" @default.
- W3112843499 title "The Theory and New Unified Formulas of Displacement-Type Local Absorbing Boundary Conditions" @default.
- W3112843499 cites W1794733799 @default.
- W3112843499 cites W1847337170 @default.
- W3112843499 cites W1971401895 @default.
- W3112843499 cites W1976833809 @default.
- W3112843499 cites W1980525747 @default.
- W3112843499 cites W1983108430 @default.
- W3112843499 cites W1983200475 @default.
- W3112843499 cites W1985738026 @default.
- W3112843499 cites W1990655836 @default.
- W3112843499 cites W1990792968 @default.
- W3112843499 cites W1991925114 @default.
- W3112843499 cites W1992332255 @default.
- W3112843499 cites W1996201390 @default.
- W3112843499 cites W2001819970 @default.
- W3112843499 cites W2003810875 @default.
- W3112843499 cites W2007575342 @default.
- W3112843499 cites W2010119323 @default.
- W3112843499 cites W2011431482 @default.
- W3112843499 cites W2011572440 @default.
- W3112843499 cites W2014496150 @default.
- W3112843499 cites W2016422228 @default.
- W3112843499 cites W2019926748 @default.
- W3112843499 cites W2027634714 @default.
- W3112843499 cites W2031027147 @default.
- W3112843499 cites W2037645809 @default.
- W3112843499 cites W2043636348 @default.
- W3112843499 cites W2048269627 @default.
- W3112843499 cites W2049691044 @default.
- W3112843499 cites W2050917866 @default.
- W3112843499 cites W2057975356 @default.
- W3112843499 cites W2061386173 @default.
- W3112843499 cites W2067907228 @default.
- W3112843499 cites W2069627726 @default.
- W3112843499 cites W2069827385 @default.
- W3112843499 cites W2070497279 @default.
- W3112843499 cites W2075241282 @default.
- W3112843499 cites W2076468867 @default.
- W3112843499 cites W2087752754 @default.
- W3112843499 cites W2087988985 @default.
- W3112843499 cites W2091509814 @default.
- W3112843499 cites W2094736655 @default.
- W3112843499 cites W2097938227 @default.
- W3112843499 cites W2104073392 @default.
- W3112843499 cites W2104498626 @default.
- W3112843499 cites W2118069284 @default.
- W3112843499 cites W2120271342 @default.
- W3112843499 cites W2120536977 @default.
- W3112843499 cites W2122277055 @default.
- W3112843499 cites W2123378934 @default.
- W3112843499 cites W2123564017 @default.
- W3112843499 cites W2123930157 @default.
- W3112843499 cites W2125791194 @default.
- W3112843499 cites W2126308339 @default.
- W3112843499 cites W2130788262 @default.
- W3112843499 cites W2131360160 @default.
- W3112843499 cites W2133594494 @default.
- W3112843499 cites W2136552473 @default.
- W3112843499 cites W2138795729 @default.
- W3112843499 cites W2139998245 @default.
- W3112843499 cites W2149004277 @default.
- W3112843499 cites W2151465427 @default.
- W3112843499 cites W2151901634 @default.
- W3112843499 cites W2168382747 @default.
- W3112843499 cites W2180421538 @default.
- W3112843499 cites W2324778589 @default.
- W3112843499 cites W2405130551 @default.
- W3112843499 cites W2416561128 @default.
- W3112843499 cites W2465945241 @default.
- W3112843499 cites W2471648495 @default.
- W3112843499 cites W2473991089 @default.
- W3112843499 cites W2582403229 @default.
- W3112843499 cites W2601245402 @default.
- W3112843499 cites W2608462144 @default.
- W3112843499 cites W2750001250 @default.
- W3112843499 cites W2794384759 @default.
- W3112843499 cites W2801707896 @default.
- W3112843499 cites W2889346727 @default.
- W3112843499 cites W3202528256 @default.
- W3112843499 cites W4252651393 @default.
- W3112843499 doi "https://doi.org/10.1785/0120200155" @default.
- W3112843499 hasPublicationYear "2020" @default.
- W3112843499 type Work @default.
- W3112843499 sameAs 3112843499 @default.
- W3112843499 citedByCount "2" @default.
- W3112843499 countsByYear W31128434992023 @default.
- W3112843499 crossrefType "journal-article" @default.
- W3112843499 hasAuthorship W3112843499A5012094328 @default.