Matches in SemOpenAlex for { <https://semopenalex.org/work/W3112858196> ?p ?o ?g. }
- W3112858196 endingPage "346" @default.
- W3112858196 startingPage "336" @default.
- W3112858196 abstract "Drugs in solid dispersion (SD) take advantage of fast and extended dissolution, thus attains a higher bioavailability than the crystal form. However, current development of SD relies on a random large-scale formulation screening method with low efficiency. Current research aims to integrate various computational tools, including machine learning (ML), molecular dynamic (MD) simulation and physiologically based pharmacokinetic (PBPK) modeling, to accelerate the development of SD formulations. Firstly, based on a dataset consisting of 674 dissolution profiles of SD, the random forest algorithm was used to construct a classification model to distinguish two types of dissolution profiles: “spring-and-parachute” and “maintain supersaturation”, and a regression model to predict the time-dependent dissolution profiles. Both of the two prediction models showed good prediction performance. Moreover, feature importance was performed to help understand the key information that contributes to the model. After that, the vemurafenib (VEM) SD formulation in previous report was used as an example to validate the models. MD simulation was used to investigate the dissolution behavior of two SD formulations with two polymers (HPMCAS and Eudragit) at the molecular level. The results showed that the HPMCAS-based formulation resulted in faster dissolution than the Eudragit formulation, which agreed with the reported experimental results. Finally, a PBPK model was constructed to accurately predict the human pharmacokinetic profile of the VEM-HPMCAS SD formulation. In conclusion, combined computational tools have been developed to in silico predict formulation composition, in vitro release and in vivo absorption behavior of SD formulations. The integrated computational methodology will significantly facilitate pharmaceutical formulation development than the traditional trial-and-error approach in the laboratory." @default.
- W3112858196 created "2020-12-21" @default.
- W3112858196 creator A5004795100 @default.
- W3112858196 creator A5024615233 @default.
- W3112858196 creator A5038656294 @default.
- W3112858196 creator A5040920352 @default.
- W3112858196 creator A5066926098 @default.
- W3112858196 date "2021-01-01" @default.
- W3112858196 modified "2023-10-05" @default.
- W3112858196 title "An integrated computational methodology with data-driven machine learning, molecular modeling and PBPK modeling to accelerate solid dispersion formulation design" @default.
- W3112858196 cites W1870101566 @default.
- W3112858196 cites W1965096889 @default.
- W3112858196 cites W1976021540 @default.
- W3112858196 cites W1982462615 @default.
- W3112858196 cites W1991383297 @default.
- W3112858196 cites W1993346054 @default.
- W3112858196 cites W1994893251 @default.
- W3112858196 cites W2009956521 @default.
- W3112858196 cites W2010188685 @default.
- W3112858196 cites W2015203678 @default.
- W3112858196 cites W2027440437 @default.
- W3112858196 cites W2030128944 @default.
- W3112858196 cites W2032945022 @default.
- W3112858196 cites W2035798158 @default.
- W3112858196 cites W2037527490 @default.
- W3112858196 cites W2038595087 @default.
- W3112858196 cites W2039163843 @default.
- W3112858196 cites W2039929264 @default.
- W3112858196 cites W2042075020 @default.
- W3112858196 cites W2045398797 @default.
- W3112858196 cites W2057930316 @default.
- W3112858196 cites W2067643341 @default.
- W3112858196 cites W2072683434 @default.
- W3112858196 cites W2074888575 @default.
- W3112858196 cites W2076770313 @default.
- W3112858196 cites W2078814811 @default.
- W3112858196 cites W2083666950 @default.
- W3112858196 cites W2092829070 @default.
- W3112858196 cites W2109530280 @default.
- W3112858196 cites W2128994331 @default.
- W3112858196 cites W2135303873 @default.
- W3112858196 cites W2147993766 @default.
- W3112858196 cites W2149111315 @default.
- W3112858196 cites W2154468380 @default.
- W3112858196 cites W2195203261 @default.
- W3112858196 cites W2253675932 @default.
- W3112858196 cites W2304404543 @default.
- W3112858196 cites W2305495457 @default.
- W3112858196 cites W2335512730 @default.
- W3112858196 cites W2344606181 @default.
- W3112858196 cites W2346957939 @default.
- W3112858196 cites W2406951350 @default.
- W3112858196 cites W2477997774 @default.
- W3112858196 cites W2509227394 @default.
- W3112858196 cites W2550044800 @default.
- W3112858196 cites W2556496813 @default.
- W3112858196 cites W2613428059 @default.
- W3112858196 cites W2619763996 @default.
- W3112858196 cites W2621823722 @default.
- W3112858196 cites W2745686323 @default.
- W3112858196 cites W2761233380 @default.
- W3112858196 cites W2766293281 @default.
- W3112858196 cites W2779386556 @default.
- W3112858196 cites W2797797435 @default.
- W3112858196 cites W2911317435 @default.
- W3112858196 cites W2911964244 @default.
- W3112858196 cites W2914966085 @default.
- W3112858196 cites W2915796629 @default.
- W3112858196 cites W2945986317 @default.
- W3112858196 cites W2967722225 @default.
- W3112858196 cites W2971199424 @default.
- W3112858196 cites W2980710828 @default.
- W3112858196 cites W2981556959 @default.
- W3112858196 cites W2992030487 @default.
- W3112858196 cites W3004656192 @default.
- W3112858196 cites W657638685 @default.
- W3112858196 doi "https://doi.org/10.1016/j.ejpb.2020.12.001" @default.
- W3112858196 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33301864" @default.
- W3112858196 hasPublicationYear "2021" @default.
- W3112858196 type Work @default.
- W3112858196 sameAs 3112858196 @default.
- W3112858196 citedByCount "33" @default.
- W3112858196 countsByYear W31128581962021 @default.
- W3112858196 countsByYear W31128581962022 @default.
- W3112858196 countsByYear W31128581962023 @default.
- W3112858196 crossrefType "journal-article" @default.
- W3112858196 hasAuthorship W3112858196A5004795100 @default.
- W3112858196 hasAuthorship W3112858196A5024615233 @default.
- W3112858196 hasAuthorship W3112858196A5038656294 @default.
- W3112858196 hasAuthorship W3112858196A5040920352 @default.
- W3112858196 hasAuthorship W3112858196A5066926098 @default.
- W3112858196 hasConcept C112705442 @default.
- W3112858196 hasConcept C120665830 @default.
- W3112858196 hasConcept C121332964 @default.
- W3112858196 hasConcept C14029885 @default.
- W3112858196 hasConcept C147789679 @default.
- W3112858196 hasConcept C177562468 @default.
- W3112858196 hasConcept C178790620 @default.