Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113013634> ?p ?o ?g. }
- W3113013634 endingPage "129268" @default.
- W3113013634 startingPage "129268" @default.
- W3113013634 abstract "Abstract Application of machine-learning methods to assess the batch adsorption of malachite green (MG) dye on chitosan/polyvinyl alcohol/zeolite imidazolate frameworks membrane adsorbents (CPZ) was investigated in this study. Our previous research results proved the suitability of the CPZ membranes for wastewater decoloring. In the current work, the residence time was combined with the other operational variables i.e., pH, initial dye concentration, and adsorbent dose (AD), to obtain the possible interactions involved in nonequilibrium adsorption. Two well-known soft-computing approaches, multi-layer perceptron adaptive neural network (MLP-ANN) and adaptive neural fuzzy inference system (ANFIS), were selected among different machine learning alternatives and then, comprehensively compared with each other considering reliability and accuracy for a 60 number of runs. The ANFIS structure with nine centers of clusters could predict the adsorption performance better than the ANN approach. Root mean square error (RMSE) and R-square were obtained 0.01822 and 0.9958 for the test data, respectively. The interpretability test resulted a linear trend predicted by the model and disclosed that the maximum value of the removal efficiency (99.5%) could be obtained when the amount of the inputs set to the upper limit. Lastly, the sensitivity analysis uncovered that the residence time has a decisive effect (relevancy factor > 80%) on the removal efficiency. According to the results, ANFIS is an effective and reliable tool to optimize and intensify the membrane adsorption process." @default.
- W3113013634 created "2020-12-21" @default.
- W3113013634 creator A5001293665 @default.
- W3113013634 creator A5006267520 @default.
- W3113013634 creator A5007811818 @default.
- W3113013634 creator A5048032514 @default.
- W3113013634 creator A5068562946 @default.
- W3113013634 date "2021-03-01" @default.
- W3113013634 modified "2023-10-17" @default.
- W3113013634 title "Multivariate data-based optimization of membrane adsorption process for wastewater treatment: Multi-layer perceptron adaptive neural network versus adaptive neural fuzzy inference system" @default.
- W3113013634 cites W1878458248 @default.
- W3113013634 cites W1985150040 @default.
- W3113013634 cites W1987190058 @default.
- W3113013634 cites W1990368529 @default.
- W3113013634 cites W2019207321 @default.
- W3113013634 cites W2021358274 @default.
- W3113013634 cites W2021377867 @default.
- W3113013634 cites W2027666102 @default.
- W3113013634 cites W2035086573 @default.
- W3113013634 cites W2049387654 @default.
- W3113013634 cites W2051063745 @default.
- W3113013634 cites W2053677366 @default.
- W3113013634 cites W2057119701 @default.
- W3113013634 cites W2073198688 @default.
- W3113013634 cites W2077228204 @default.
- W3113013634 cites W2077537188 @default.
- W3113013634 cites W2077967845 @default.
- W3113013634 cites W2083434316 @default.
- W3113013634 cites W2085308176 @default.
- W3113013634 cites W2093469230 @default.
- W3113013634 cites W2157041604 @default.
- W3113013634 cites W2174504559 @default.
- W3113013634 cites W2338227759 @default.
- W3113013634 cites W2467942801 @default.
- W3113013634 cites W2544484598 @default.
- W3113013634 cites W2769519208 @default.
- W3113013634 cites W2769912520 @default.
- W3113013634 cites W2793717135 @default.
- W3113013634 cites W2796698500 @default.
- W3113013634 cites W2897192721 @default.
- W3113013634 cites W2917234733 @default.
- W3113013634 cites W2920618933 @default.
- W3113013634 cites W2961407974 @default.
- W3113013634 cites W2964717664 @default.
- W3113013634 cites W2986289242 @default.
- W3113013634 cites W2999511825 @default.
- W3113013634 cites W3000154186 @default.
- W3113013634 cites W3000521890 @default.
- W3113013634 cites W3003643106 @default.
- W3113013634 cites W3008080456 @default.
- W3113013634 cites W3013493369 @default.
- W3113013634 cites W3014819008 @default.
- W3113013634 cites W3024016322 @default.
- W3113013634 cites W3033590803 @default.
- W3113013634 doi "https://doi.org/10.1016/j.chemosphere.2020.129268" @default.
- W3113013634 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33338708" @default.
- W3113013634 hasPublicationYear "2021" @default.
- W3113013634 type Work @default.
- W3113013634 sameAs 3113013634 @default.
- W3113013634 citedByCount "24" @default.
- W3113013634 countsByYear W31130136342021 @default.
- W3113013634 countsByYear W31130136342022 @default.
- W3113013634 countsByYear W31130136342023 @default.
- W3113013634 crossrefType "journal-article" @default.
- W3113013634 hasAuthorship W3113013634A5001293665 @default.
- W3113013634 hasAuthorship W3113013634A5006267520 @default.
- W3113013634 hasAuthorship W3113013634A5007811818 @default.
- W3113013634 hasAuthorship W3113013634A5048032514 @default.
- W3113013634 hasAuthorship W3113013634A5068562946 @default.
- W3113013634 hasConcept C111919701 @default.
- W3113013634 hasConcept C119857082 @default.
- W3113013634 hasConcept C124101348 @default.
- W3113013634 hasConcept C150394285 @default.
- W3113013634 hasConcept C154945302 @default.
- W3113013634 hasConcept C161584116 @default.
- W3113013634 hasConcept C178790620 @default.
- W3113013634 hasConcept C179717631 @default.
- W3113013634 hasConcept C185592680 @default.
- W3113013634 hasConcept C186108316 @default.
- W3113013634 hasConcept C195975749 @default.
- W3113013634 hasConcept C2776214188 @default.
- W3113013634 hasConcept C29470771 @default.
- W3113013634 hasConcept C2987376176 @default.
- W3113013634 hasConcept C2988105877 @default.
- W3113013634 hasConcept C41008148 @default.
- W3113013634 hasConcept C50644808 @default.
- W3113013634 hasConcept C58166 @default.
- W3113013634 hasConcept C60908668 @default.
- W3113013634 hasConcept C98045186 @default.
- W3113013634 hasConceptScore W3113013634C111919701 @default.
- W3113013634 hasConceptScore W3113013634C119857082 @default.
- W3113013634 hasConceptScore W3113013634C124101348 @default.
- W3113013634 hasConceptScore W3113013634C150394285 @default.
- W3113013634 hasConceptScore W3113013634C154945302 @default.
- W3113013634 hasConceptScore W3113013634C161584116 @default.
- W3113013634 hasConceptScore W3113013634C178790620 @default.
- W3113013634 hasConceptScore W3113013634C179717631 @default.
- W3113013634 hasConceptScore W3113013634C185592680 @default.