Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113047252> ?p ?o ?g. }
- W3113047252 endingPage "095201" @default.
- W3113047252 startingPage "095201" @default.
- W3113047252 abstract "High-performance absorbing material can play an important role in electromagnetic compatibility, electromagnetic radiation protection, and anti-detection of special equipment. Combining traditional absorbing material with metamaterial is an important direction for developing absorbing material. The composite absorbing body based on the development of metamaterial has advantages of thin thickness, light weight, strong absorption, and adjustable absorption band, but the super material absorption body composed of single-sized metal pattern elements possesses generally strong absorption only for electromagnetic waves at a certain frequency. It is difficult to meet the requirement for wide frequency absorption in practical applications. In order to broaden the absorption bandwidth of metamatial, metal spiral-ring metasurface coated short carbon fiber absorber with enhanced microwave absorbing performance is proposed. The absorber is a two-dimensional structure formed by periodically arranging a large number of individual absorber units in the horizontal and vertical direction. In the HFSS simulation software, a master-slave boundary condition” consisting of master boundary” and slave boundary” is provided. Under this boundary condition, the electric field between adjacent boundaries has a phase difference, which can be used to simulate an infinite array. The research results show that the obvious enhancement of both the absorption peak and bandwidth can be observed by embedding the double-layer spiral-ring metasurfaces. The increase of initial length of spiral-rings and thickness of absorber are beneficial to further enhancing the microwave absorption. The reflection loss from 9.2 GHz to 18.0 GHz are under –10 dB (the bandwidth reaches 8.8 GHz), and the peak of <i>S</i><sub>11</sub> is –14.4 dB. Besides, we find that the effective electromagnetic parameters and impedance of spiral-ring metasurface embedded microwave absorber present obvious resonant phenomenon at multi-frequencies by calculating <i>S</i> parameters. Furthermore, an equivalent circuit model regarding double-layer spiral-ring embedded absorber is established to reveal the attenuation mechanism of microwave energy. The resonant frequencies derived from this model are well accord with the simulated results. Thereby, the multi-electromagnetic resonant frequencies make the composite microwave absorber combined with double-layer metal spiral-ring and carbon fiber have microwave reflection loss in a wide bandwidth." @default.
- W3113047252 created "2020-12-21" @default.
- W3113047252 creator A5003624500 @default.
- W3113047252 creator A5026607017 @default.
- W3113047252 creator A5032683909 @default.
- W3113047252 creator A5056915005 @default.
- W3113047252 creator A5072190752 @default.
- W3113047252 creator A5075833706 @default.
- W3113047252 creator A5089382306 @default.
- W3113047252 date "2019-01-01" @default.
- W3113047252 modified "2023-10-17" @default.
- W3113047252 title "Equivalent circuit model and microwave reflection loss mechanism of double-layer spiral-ring metasurface embedded composite microwave absorber" @default.
- W3113047252 cites W1884253139 @default.
- W3113047252 cites W1970740079 @default.
- W3113047252 cites W1982895694 @default.
- W3113047252 cites W1995396285 @default.
- W3113047252 cites W2009467974 @default.
- W3113047252 cites W2031455637 @default.
- W3113047252 cites W2079822887 @default.
- W3113047252 cites W2094393199 @default.
- W3113047252 cites W2226010364 @default.
- W3113047252 cites W2230275304 @default.
- W3113047252 cites W2413496384 @default.
- W3113047252 cites W2553435676 @default.
- W3113047252 cites W2558184585 @default.
- W3113047252 cites W2599361750 @default.
- W3113047252 cites W2739674080 @default.
- W3113047252 cites W2765654811 @default.
- W3113047252 cites W2789976159 @default.
- W3113047252 cites W3004549176 @default.
- W3113047252 cites W3111204480 @default.
- W3113047252 cites W3114171805 @default.
- W3113047252 doi "https://doi.org/10.7498/aps.68.20181960" @default.
- W3113047252 hasPublicationYear "2019" @default.
- W3113047252 type Work @default.
- W3113047252 sameAs 3113047252 @default.
- W3113047252 citedByCount "3" @default.
- W3113047252 countsByYear W31130472522020 @default.
- W3113047252 countsByYear W31130472522022 @default.
- W3113047252 countsByYear W31130472522023 @default.
- W3113047252 crossrefType "journal-article" @default.
- W3113047252 hasAuthorship W3113047252A5003624500 @default.
- W3113047252 hasAuthorship W3113047252A5026607017 @default.
- W3113047252 hasAuthorship W3113047252A5032683909 @default.
- W3113047252 hasAuthorship W3113047252A5056915005 @default.
- W3113047252 hasAuthorship W3113047252A5072190752 @default.
- W3113047252 hasAuthorship W3113047252A5075833706 @default.
- W3113047252 hasAuthorship W3113047252A5089382306 @default.
- W3113047252 hasBestOaLocation W31130472521 @default.
- W3113047252 hasConcept C104779481 @default.
- W3113047252 hasConcept C110367647 @default.
- W3113047252 hasConcept C111145636 @default.
- W3113047252 hasConcept C120665830 @default.
- W3113047252 hasConcept C121332964 @default.
- W3113047252 hasConcept C125287762 @default.
- W3113047252 hasConcept C149773537 @default.
- W3113047252 hasConcept C159985019 @default.
- W3113047252 hasConcept C170349913 @default.
- W3113047252 hasConcept C192562407 @default.
- W3113047252 hasConcept C21822782 @default.
- W3113047252 hasConcept C2776257435 @default.
- W3113047252 hasConcept C2776844852 @default.
- W3113047252 hasConcept C2777036283 @default.
- W3113047252 hasConcept C41008148 @default.
- W3113047252 hasConcept C44552347 @default.
- W3113047252 hasConcept C44838205 @default.
- W3113047252 hasConcept C49040817 @default.
- W3113047252 hasConcept C76155785 @default.
- W3113047252 hasConceptScore W3113047252C104779481 @default.
- W3113047252 hasConceptScore W3113047252C110367647 @default.
- W3113047252 hasConceptScore W3113047252C111145636 @default.
- W3113047252 hasConceptScore W3113047252C120665830 @default.
- W3113047252 hasConceptScore W3113047252C121332964 @default.
- W3113047252 hasConceptScore W3113047252C125287762 @default.
- W3113047252 hasConceptScore W3113047252C149773537 @default.
- W3113047252 hasConceptScore W3113047252C159985019 @default.
- W3113047252 hasConceptScore W3113047252C170349913 @default.
- W3113047252 hasConceptScore W3113047252C192562407 @default.
- W3113047252 hasConceptScore W3113047252C21822782 @default.
- W3113047252 hasConceptScore W3113047252C2776257435 @default.
- W3113047252 hasConceptScore W3113047252C2776844852 @default.
- W3113047252 hasConceptScore W3113047252C2777036283 @default.
- W3113047252 hasConceptScore W3113047252C41008148 @default.
- W3113047252 hasConceptScore W3113047252C44552347 @default.
- W3113047252 hasConceptScore W3113047252C44838205 @default.
- W3113047252 hasConceptScore W3113047252C49040817 @default.
- W3113047252 hasConceptScore W3113047252C76155785 @default.
- W3113047252 hasIssue "9" @default.
- W3113047252 hasLocation W31130472521 @default.
- W3113047252 hasOpenAccess W3113047252 @default.
- W3113047252 hasPrimaryLocation W31130472521 @default.
- W3113047252 hasRelatedWork W1984582225 @default.
- W3113047252 hasRelatedWork W2070633282 @default.
- W3113047252 hasRelatedWork W2076578790 @default.
- W3113047252 hasRelatedWork W2168644343 @default.
- W3113047252 hasRelatedWork W2230888643 @default.
- W3113047252 hasRelatedWork W2999744507 @default.
- W3113047252 hasRelatedWork W3211717084 @default.