Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113053567> ?p ?o ?g. }
- W3113053567 endingPage "12" @default.
- W3113053567 startingPage "1" @default.
- W3113053567 abstract "In actual engineering applications, inevitable noise seriously affects the accuracy of fault diagnosis for rotating machinery. To effectively identify the fault classes of rotating machinery under noise interference, an efficient fault diagnosis method without additional denoising procedures is proposed. First, a one-dimensional deep residual shrinkage network, which directly takes the raw vibration signals contaminated by noise as input, is developed to realize end-to-end fault diagnosis. Then, to further enhance the noise immunity of the diagnosis model, the first layer of the model is set to a wide convolution layer to extract short time features. Moreover, an adaptive batch normalization algorithm (AdaBN) is introduced into the diagnosis model to enhance the adaptability to noise. Experimental results illustrate that the fault diagnosis model for rotating machinery based on one-dimensional deep residual shrinkage network with a wide convolution layer (1D-WDRSN) can accurately identify the fault classes even under noise interference." @default.
- W3113053567 created "2020-12-21" @default.
- W3113053567 creator A5008300437 @default.
- W3113053567 creator A5015993488 @default.
- W3113053567 creator A5065973048 @default.
- W3113053567 creator A5087981266 @default.
- W3113053567 creator A5088672902 @default.
- W3113053567 date "2020-12-09" @default.
- W3113053567 modified "2023-09-24" @default.
- W3113053567 title "Fault Diagnosis of Rotating Machinery Based on One-Dimensional Deep Residual Shrinkage Network with a Wide Convolution Layer" @default.
- W3113053567 cites W1694307164 @default.
- W3113053567 cites W2003945139 @default.
- W3113053567 cites W2126584714 @default.
- W3113053567 cites W2324044936 @default.
- W3113053567 cites W2374984480 @default.
- W3113053567 cites W2584994008 @default.
- W3113053567 cites W2601590138 @default.
- W3113053567 cites W2609688418 @default.
- W3113053567 cites W2732580010 @default.
- W3113053567 cites W2744790985 @default.
- W3113053567 cites W2763230888 @default.
- W3113053567 cites W2765284480 @default.
- W3113053567 cites W2811261499 @default.
- W3113053567 cites W2886506350 @default.
- W3113053567 cites W2892709813 @default.
- W3113053567 cites W2903854667 @default.
- W3113053567 cites W2945635081 @default.
- W3113053567 cites W2963420686 @default.
- W3113053567 cites W2963921977 @default.
- W3113053567 cites W2966007380 @default.
- W3113053567 cites W2975932043 @default.
- W3113053567 cites W2977117446 @default.
- W3113053567 cites W2990920633 @default.
- W3113053567 cites W3000384844 @default.
- W3113053567 cites W3000736763 @default.
- W3113053567 cites W3004451154 @default.
- W3113053567 cites W3005695061 @default.
- W3113053567 cites W3010931250 @default.
- W3113053567 cites W3011171540 @default.
- W3113053567 cites W3015173390 @default.
- W3113053567 cites W3019860881 @default.
- W3113053567 cites W3023920206 @default.
- W3113053567 cites W3024143642 @default.
- W3113053567 cites W3024462273 @default.
- W3113053567 cites W3025583621 @default.
- W3113053567 cites W3026876342 @default.
- W3113053567 cites W3031183206 @default.
- W3113053567 doi "https://doi.org/10.1155/2020/8880960" @default.
- W3113053567 hasPublicationYear "2020" @default.
- W3113053567 type Work @default.
- W3113053567 sameAs 3113053567 @default.
- W3113053567 citedByCount "6" @default.
- W3113053567 countsByYear W31130535672021 @default.
- W3113053567 countsByYear W31130535672022 @default.
- W3113053567 crossrefType "journal-article" @default.
- W3113053567 hasAuthorship W3113053567A5008300437 @default.
- W3113053567 hasAuthorship W3113053567A5015993488 @default.
- W3113053567 hasAuthorship W3113053567A5065973048 @default.
- W3113053567 hasAuthorship W3113053567A5087981266 @default.
- W3113053567 hasAuthorship W3113053567A5088672902 @default.
- W3113053567 hasBestOaLocation W31130535671 @default.
- W3113053567 hasConcept C11413529 @default.
- W3113053567 hasConcept C115961682 @default.
- W3113053567 hasConcept C121332964 @default.
- W3113053567 hasConcept C127162648 @default.
- W3113053567 hasConcept C127313418 @default.
- W3113053567 hasConcept C127413603 @default.
- W3113053567 hasConcept C136886441 @default.
- W3113053567 hasConcept C144024400 @default.
- W3113053567 hasConcept C154945302 @default.
- W3113053567 hasConcept C155512373 @default.
- W3113053567 hasConcept C163294075 @default.
- W3113053567 hasConcept C165205528 @default.
- W3113053567 hasConcept C175551986 @default.
- W3113053567 hasConcept C19165224 @default.
- W3113053567 hasConcept C198394728 @default.
- W3113053567 hasConcept C24326235 @default.
- W3113053567 hasConcept C24890656 @default.
- W3113053567 hasConcept C32022120 @default.
- W3113053567 hasConcept C41008148 @default.
- W3113053567 hasConcept C45347329 @default.
- W3113053567 hasConcept C50644808 @default.
- W3113053567 hasConcept C76155785 @default.
- W3113053567 hasConcept C99498987 @default.
- W3113053567 hasConceptScore W3113053567C11413529 @default.
- W3113053567 hasConceptScore W3113053567C115961682 @default.
- W3113053567 hasConceptScore W3113053567C121332964 @default.
- W3113053567 hasConceptScore W3113053567C127162648 @default.
- W3113053567 hasConceptScore W3113053567C127313418 @default.
- W3113053567 hasConceptScore W3113053567C127413603 @default.
- W3113053567 hasConceptScore W3113053567C136886441 @default.
- W3113053567 hasConceptScore W3113053567C144024400 @default.
- W3113053567 hasConceptScore W3113053567C154945302 @default.
- W3113053567 hasConceptScore W3113053567C155512373 @default.
- W3113053567 hasConceptScore W3113053567C163294075 @default.
- W3113053567 hasConceptScore W3113053567C165205528 @default.
- W3113053567 hasConceptScore W3113053567C175551986 @default.
- W3113053567 hasConceptScore W3113053567C19165224 @default.