Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113054716> ?p ?o ?g. }
- W3113054716 endingPage "101197" @default.
- W3113054716 startingPage "101197" @default.
- W3113054716 abstract "Machine learning methods are considered a promising approach for improving operations and processes in manufacturing. However, the application of machine learning often requires the expertise of a data scientist combined with thorough knowledge of the manufacturing processes. Small and medium-sized companies that specialize in certain high value-added, variant rich production processes often lack an in-house data scientist and therefore miss out on generating a deeper data-driven insight from their production data streams. This paper proposes a three-step machine learning methodology to empower process experts with limited knowledge in machine learning: 1) data exploration through clustering, 2) representation of the production systems behaviour through specially structured neural networks and 3) querying this representation through evolutionary algorithms to achieve decision support through online optimization or scenario simulation. The chosen algorithms focus on parameter-light, well-established, general use algorithms in order to lower knowledge requirements for their application." @default.
- W3113054716 created "2020-12-21" @default.
- W3113054716 creator A5012455464 @default.
- W3113054716 creator A5018180977 @default.
- W3113054716 creator A5027482942 @default.
- W3113054716 creator A5063454515 @default.
- W3113054716 creator A5073109725 @default.
- W3113054716 creator A5085087964 @default.
- W3113054716 date "2021-01-01" @default.
- W3113054716 modified "2023-10-01" @default.
- W3113054716 title "Introduction of a time series machine learning methodology for the application in a production system" @default.
- W3113054716 cites W1513731586 @default.
- W3113054716 cites W1946238955 @default.
- W3113054716 cites W1965009340 @default.
- W3113054716 cites W1967429206 @default.
- W3113054716 cites W1968885510 @default.
- W3113054716 cites W1971744127 @default.
- W3113054716 cites W1987971958 @default.
- W3113054716 cites W2007562521 @default.
- W3113054716 cites W2020009149 @default.
- W3113054716 cites W2020663993 @default.
- W3113054716 cites W2020851875 @default.
- W3113054716 cites W2022419033 @default.
- W3113054716 cites W2028070629 @default.
- W3113054716 cites W2029767187 @default.
- W3113054716 cites W2030013724 @default.
- W3113054716 cites W2033927753 @default.
- W3113054716 cites W2045257906 @default.
- W3113054716 cites W2051224630 @default.
- W3113054716 cites W2051979659 @default.
- W3113054716 cites W2058336269 @default.
- W3113054716 cites W2064675550 @default.
- W3113054716 cites W2077780740 @default.
- W3113054716 cites W2079537749 @default.
- W3113054716 cites W2081028405 @default.
- W3113054716 cites W2083787158 @default.
- W3113054716 cites W2085487226 @default.
- W3113054716 cites W2097747115 @default.
- W3113054716 cites W2103452139 @default.
- W3113054716 cites W2108353709 @default.
- W3113054716 cites W2108383531 @default.
- W3113054716 cites W2114053544 @default.
- W3113054716 cites W2124823351 @default.
- W3113054716 cites W2139177900 @default.
- W3113054716 cites W2146615496 @default.
- W3113054716 cites W2149921893 @default.
- W3113054716 cites W2150593711 @default.
- W3113054716 cites W2166064672 @default.
- W3113054716 cites W2166833678 @default.
- W3113054716 cites W2170423728 @default.
- W3113054716 cites W2295939521 @default.
- W3113054716 cites W2754051771 @default.
- W3113054716 cites W2765763552 @default.
- W3113054716 cites W2770979082 @default.
- W3113054716 cites W2771783069 @default.
- W3113054716 cites W2789444712 @default.
- W3113054716 cites W3125175941 @default.
- W3113054716 cites W3198350258 @default.
- W3113054716 cites W2030191115 @default.
- W3113054716 doi "https://doi.org/10.1016/j.aei.2020.101197" @default.
- W3113054716 hasPublicationYear "2021" @default.
- W3113054716 type Work @default.
- W3113054716 sameAs 3113054716 @default.
- W3113054716 citedByCount "7" @default.
- W3113054716 countsByYear W31130547162021 @default.
- W3113054716 countsByYear W31130547162022 @default.
- W3113054716 countsByYear W31130547162023 @default.
- W3113054716 crossrefType "journal-article" @default.
- W3113054716 hasAuthorship W3113054716A5012455464 @default.
- W3113054716 hasAuthorship W3113054716A5018180977 @default.
- W3113054716 hasAuthorship W3113054716A5027482942 @default.
- W3113054716 hasAuthorship W3113054716A5063454515 @default.
- W3113054716 hasAuthorship W3113054716A5073109725 @default.
- W3113054716 hasAuthorship W3113054716A5085087964 @default.
- W3113054716 hasConcept C111919701 @default.
- W3113054716 hasConcept C119857082 @default.
- W3113054716 hasConcept C124101348 @default.
- W3113054716 hasConcept C127413603 @default.
- W3113054716 hasConcept C13736549 @default.
- W3113054716 hasConcept C139719470 @default.
- W3113054716 hasConcept C154945302 @default.
- W3113054716 hasConcept C162324750 @default.
- W3113054716 hasConcept C17744445 @default.
- W3113054716 hasConcept C199539241 @default.
- W3113054716 hasConcept C2776359362 @default.
- W3113054716 hasConcept C2778348673 @default.
- W3113054716 hasConcept C41008148 @default.
- W3113054716 hasConcept C50644808 @default.
- W3113054716 hasConcept C73555534 @default.
- W3113054716 hasConcept C89198739 @default.
- W3113054716 hasConcept C94625758 @default.
- W3113054716 hasConcept C98045186 @default.
- W3113054716 hasConceptScore W3113054716C111919701 @default.
- W3113054716 hasConceptScore W3113054716C119857082 @default.
- W3113054716 hasConceptScore W3113054716C124101348 @default.
- W3113054716 hasConceptScore W3113054716C127413603 @default.
- W3113054716 hasConceptScore W3113054716C13736549 @default.
- W3113054716 hasConceptScore W3113054716C139719470 @default.