Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113070070> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3113070070 endingPage "022052" @default.
- W3113070070 startingPage "022052" @default.
- W3113070070 abstract "In the world wide millions of people interested on games and competitive matches. The stakeholders stand for one team and produce the sponsorship to the players. Huge amount of money transferred from one hand to other hand. So that stakeholder wants to select a good players into his teams. Here Machine Learning based multi variant regression algorithms used to calculate the progress of each player based on previous datasets to predict the performance at on-going match. To extract the features from on-going match characterized with learned datasets by implementing the Support Vector Machine (SVM), Gaussian Fit-chime (GAU) and KNN algorithms which perform the optimal classification on trained datasets. Feature selection and game predictions are become critical analytical process. The performance of the model effected and produces the outcome based on the feature selection. In this process some irrelevant variables removed to reduce the burden of algorithms and input datasets dimensions. This process speed up the dataset learning using various algorithms to produce the game predictions. The machine learning models mostly preferred algorithms to implement in feature selection are Linear Regression, Decision Tree Regression, Random Forest Regression and Boosting Algorithm like Adaptive Boosting (AdaBoost) Algorithm. In this paper we discussed about how to predict the game score based on trained datasets using various algorithms on Machine Learning platform." @default.
- W3113070070 created "2020-12-21" @default.
- W3113070070 creator A5011242716 @default.
- W3113070070 creator A5025003255 @default.
- W3113070070 creator A5038955078 @default.
- W3113070070 creator A5051675172 @default.
- W3113070070 creator A5055183465 @default.
- W3113070070 creator A5089421343 @default.
- W3113070070 date "2020-12-05" @default.
- W3113070070 modified "2023-09-30" @default.
- W3113070070 title "Survey on machine leaning based game predictions" @default.
- W3113070070 cites W2101900104 @default.
- W3113070070 cites W2108389847 @default.
- W3113070070 cites W2117993108 @default.
- W3113070070 cites W2419548415 @default.
- W3113070070 cites W2488437997 @default.
- W3113070070 cites W2539390893 @default.
- W3113070070 cites W2626931877 @default.
- W3113070070 cites W2765253849 @default.
- W3113070070 cites W2889865854 @default.
- W3113070070 cites W2904084132 @default.
- W3113070070 cites W2951274106 @default.
- W3113070070 cites W2999083298 @default.
- W3113070070 doi "https://doi.org/10.1088/1757-899x/981/2/022052" @default.
- W3113070070 hasPublicationYear "2020" @default.
- W3113070070 type Work @default.
- W3113070070 sameAs 3113070070 @default.
- W3113070070 citedByCount "0" @default.
- W3113070070 crossrefType "journal-article" @default.
- W3113070070 hasAuthorship W3113070070A5011242716 @default.
- W3113070070 hasAuthorship W3113070070A5025003255 @default.
- W3113070070 hasAuthorship W3113070070A5038955078 @default.
- W3113070070 hasAuthorship W3113070070A5051675172 @default.
- W3113070070 hasAuthorship W3113070070A5055183465 @default.
- W3113070070 hasAuthorship W3113070070A5089421343 @default.
- W3113070070 hasBestOaLocation W31130700701 @default.
- W3113070070 hasConcept C105795698 @default.
- W3113070070 hasConcept C108583219 @default.
- W3113070070 hasConcept C111919701 @default.
- W3113070070 hasConcept C119857082 @default.
- W3113070070 hasConcept C12267149 @default.
- W3113070070 hasConcept C124101348 @default.
- W3113070070 hasConcept C141404830 @default.
- W3113070070 hasConcept C148483581 @default.
- W3113070070 hasConcept C154945302 @default.
- W3113070070 hasConcept C169258074 @default.
- W3113070070 hasConcept C2778827112 @default.
- W3113070070 hasConcept C33923547 @default.
- W3113070070 hasConcept C41008148 @default.
- W3113070070 hasConcept C46686674 @default.
- W3113070070 hasConcept C70153297 @default.
- W3113070070 hasConcept C83546350 @default.
- W3113070070 hasConcept C84525736 @default.
- W3113070070 hasConcept C98045186 @default.
- W3113070070 hasConceptScore W3113070070C105795698 @default.
- W3113070070 hasConceptScore W3113070070C108583219 @default.
- W3113070070 hasConceptScore W3113070070C111919701 @default.
- W3113070070 hasConceptScore W3113070070C119857082 @default.
- W3113070070 hasConceptScore W3113070070C12267149 @default.
- W3113070070 hasConceptScore W3113070070C124101348 @default.
- W3113070070 hasConceptScore W3113070070C141404830 @default.
- W3113070070 hasConceptScore W3113070070C148483581 @default.
- W3113070070 hasConceptScore W3113070070C154945302 @default.
- W3113070070 hasConceptScore W3113070070C169258074 @default.
- W3113070070 hasConceptScore W3113070070C2778827112 @default.
- W3113070070 hasConceptScore W3113070070C33923547 @default.
- W3113070070 hasConceptScore W3113070070C41008148 @default.
- W3113070070 hasConceptScore W3113070070C46686674 @default.
- W3113070070 hasConceptScore W3113070070C70153297 @default.
- W3113070070 hasConceptScore W3113070070C83546350 @default.
- W3113070070 hasConceptScore W3113070070C84525736 @default.
- W3113070070 hasConceptScore W3113070070C98045186 @default.
- W3113070070 hasLocation W31130700701 @default.
- W3113070070 hasOpenAccess W3113070070 @default.
- W3113070070 hasPrimaryLocation W31130700701 @default.
- W3113070070 hasRelatedWork W3194296141 @default.
- W3113070070 hasRelatedWork W3210526060 @default.
- W3113070070 hasRelatedWork W4200057378 @default.
- W3113070070 hasRelatedWork W4220971169 @default.
- W3113070070 hasRelatedWork W4285149112 @default.
- W3113070070 hasRelatedWork W4292373754 @default.
- W3113070070 hasRelatedWork W4292387718 @default.
- W3113070070 hasRelatedWork W4293069612 @default.
- W3113070070 hasRelatedWork W4296081764 @default.
- W3113070070 hasRelatedWork W4298012357 @default.
- W3113070070 hasVolume "981" @default.
- W3113070070 isParatext "false" @default.
- W3113070070 isRetracted "false" @default.
- W3113070070 magId "3113070070" @default.
- W3113070070 workType "article" @default.