Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113100858> ?p ?o ?g. }
- W3113100858 endingPage "e05652" @default.
- W3113100858 startingPage "e05652" @default.
- W3113100858 abstract "Alzheimer's Disease (AD) is a neurodegenerative disease characterized by progressive loss of memory and general decline in cognitive functions. Multi-modal imaging such as structural MRI and DTI provide useful information for the classification of patients on the basis of brain biomarkers. Recently, CNN methods have emerged as powerful tools to improve classification using images.In this paper, we propose a transfer learning scheme using Convolutional Neural Networks (CNNs) to automatically classify brain scans focusing only on a small ROI: e.g. a few slices of the hippocampal region. The network's architecture is similar to a LeNet-like CNN upon which models are built and fused for AD stage classification diagnosis. We evaluated various types of transfer learning through the following mechanisms: (i) cross-modal (sMRI and DTI) and (ii) cross-domain transfer learning (using MNIST) (iii) a hybrid transfer learning of both types.Our method shows good performances even on small datasets and with a limited number of slices of small brain region. It increases accuracy with more than 5 points for the most difficult classification tasks, i.e., AD/MCI and MCI/NC.Our methodology provides good accuracy scores for classification over a shallow convolutional network. Besides, we focused only on a small region; i.e., the hippocampal region, where few slices are selected to feed the network. Also, we used cross-modal transfer learning.Our proposed method is suitable for working with a shallow CNN network for low-resolution MRI and DTI scans. It yields to significant results even if the model is trained on small datasets, which is often the case in medical image analysis." @default.
- W3113100858 created "2020-12-21" @default.
- W3113100858 creator A5013946853 @default.
- W3113100858 creator A5044999283 @default.
- W3113100858 creator A5059094645 @default.
- W3113100858 creator A5063746447 @default.
- W3113100858 date "2020-12-01" @default.
- W3113100858 modified "2023-10-11" @default.
- W3113100858 title "Improving Alzheimer's stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities" @default.
- W3113100858 cites W1666202957 @default.
- W3113100858 cites W1964802316 @default.
- W3113100858 cites W1965393391 @default.
- W3113100858 cites W1981734795 @default.
- W3113100858 cites W1997858799 @default.
- W3113100858 cites W2006096283 @default.
- W3113100858 cites W2030309279 @default.
- W3113100858 cites W2038003677 @default.
- W3113100858 cites W2050229052 @default.
- W3113100858 cites W2052742260 @default.
- W3113100858 cites W2058046532 @default.
- W3113100858 cites W2060295418 @default.
- W3113100858 cites W2060416311 @default.
- W3113100858 cites W2063237661 @default.
- W3113100858 cites W2071881327 @default.
- W3113100858 cites W2078524519 @default.
- W3113100858 cites W2086978209 @default.
- W3113100858 cites W2089804935 @default.
- W3113100858 cites W2112796928 @default.
- W3113100858 cites W2117340355 @default.
- W3113100858 cites W2127309075 @default.
- W3113100858 cites W2136579519 @default.
- W3113100858 cites W2136978757 @default.
- W3113100858 cites W2154158661 @default.
- W3113100858 cites W2156768950 @default.
- W3113100858 cites W2161185902 @default.
- W3113100858 cites W2169011823 @default.
- W3113100858 cites W2346062110 @default.
- W3113100858 cites W2560210227 @default.
- W3113100858 cites W2567599812 @default.
- W3113100858 cites W2751908601 @default.
- W3113100858 cites W2893483035 @default.
- W3113100858 cites W2906155095 @default.
- W3113100858 cites W2954528538 @default.
- W3113100858 cites W2977883299 @default.
- W3113100858 cites W3022315685 @default.
- W3113100858 cites W3104971239 @default.
- W3113100858 cites W4211050998 @default.
- W3113100858 cites W4235875658 @default.
- W3113100858 doi "https://doi.org/10.1016/j.heliyon.2020.e05652" @default.
- W3113100858 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7733012" @default.
- W3113100858 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33336093" @default.
- W3113100858 hasPublicationYear "2020" @default.
- W3113100858 type Work @default.
- W3113100858 sameAs 3113100858 @default.
- W3113100858 citedByCount "39" @default.
- W3113100858 countsByYear W31131008582021 @default.
- W3113100858 countsByYear W31131008582022 @default.
- W3113100858 countsByYear W31131008582023 @default.
- W3113100858 crossrefType "journal-article" @default.
- W3113100858 hasAuthorship W3113100858A5013946853 @default.
- W3113100858 hasAuthorship W3113100858A5044999283 @default.
- W3113100858 hasAuthorship W3113100858A5059094645 @default.
- W3113100858 hasAuthorship W3113100858A5063746447 @default.
- W3113100858 hasBestOaLocation W31131008581 @default.
- W3113100858 hasConcept C108583219 @default.
- W3113100858 hasConcept C119857082 @default.
- W3113100858 hasConcept C126838900 @default.
- W3113100858 hasConcept C143409427 @default.
- W3113100858 hasConcept C150899416 @default.
- W3113100858 hasConcept C153180895 @default.
- W3113100858 hasConcept C154945302 @default.
- W3113100858 hasConcept C41008148 @default.
- W3113100858 hasConcept C71924100 @default.
- W3113100858 hasConcept C81363708 @default.
- W3113100858 hasConcept C94124525 @default.
- W3113100858 hasConceptScore W3113100858C108583219 @default.
- W3113100858 hasConceptScore W3113100858C119857082 @default.
- W3113100858 hasConceptScore W3113100858C126838900 @default.
- W3113100858 hasConceptScore W3113100858C143409427 @default.
- W3113100858 hasConceptScore W3113100858C150899416 @default.
- W3113100858 hasConceptScore W3113100858C153180895 @default.
- W3113100858 hasConceptScore W3113100858C154945302 @default.
- W3113100858 hasConceptScore W3113100858C41008148 @default.
- W3113100858 hasConceptScore W3113100858C71924100 @default.
- W3113100858 hasConceptScore W3113100858C81363708 @default.
- W3113100858 hasConceptScore W3113100858C94124525 @default.
- W3113100858 hasFunder F4320306078 @default.
- W3113100858 hasFunder F4320306080 @default.
- W3113100858 hasFunder F4320306219 @default.
- W3113100858 hasFunder F4320307132 @default.
- W3113100858 hasFunder F4320307758 @default.
- W3113100858 hasFunder F4320307765 @default.
- W3113100858 hasFunder F4320307776 @default.
- W3113100858 hasFunder F4320307779 @default.
- W3113100858 hasFunder F4320308604 @default.
- W3113100858 hasFunder F4320309117 @default.
- W3113100858 hasFunder F4320309470 @default.
- W3113100858 hasFunder F4320310045 @default.