Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113102016> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3113102016 endingPage "7089" @default.
- W3113102016 startingPage "7089" @default.
- W3113102016 abstract "Due to deep learning’s accurate cognition of the street environment, the convolutional neural network has achieved dramatic development in the application of street scenes. Considering the needs of autonomous driving and assisted driving, in a general way, computer vision technology is used to find obstacles to avoid collisions, which has made semantic segmentation a research priority in recent years. However, semantic segmentation has been constantly facing new challenges for quite a long time. Complex network depth information, large datasets, real-time requirements, etc., are typical problems that need to be solved urgently in the realization of autonomous driving technology. In order to address these problems, we propose an improved lightweight real-time semantic segmentation network, which is based on an efficient image cascading network (ICNet) architecture, using multi-scale branches and a cascaded feature fusion unit to extract rich multi-level features. In this paper, a spatial information network is designed to transmit more prior knowledge of spatial location and edge information. During the course of the training phase, we append an external loss function to enhance the learning process of the deep learning network system as well. This lightweight network can quickly perceive obstacles and detect roads in the drivable area from images to satisfy autonomous driving characteristics. The proposed model shows substantial performance on the Cityscapes dataset. With the premise of ensuring real-time performance, several sets of experimental comparisons illustrate that SP-ICNet enhances the accuracy of road obstacle detection and provides nearly ideal prediction outputs. Compared to the current popular semantic segmentation network, this study also demonstrates the effectiveness of our lightweight network for road obstacle detection in autonomous driving." @default.
- W3113102016 created "2020-12-21" @default.
- W3113102016 creator A5036698882 @default.
- W3113102016 creator A5043110454 @default.
- W3113102016 creator A5048871276 @default.
- W3113102016 creator A5051094293 @default.
- W3113102016 date "2020-12-10" @default.
- W3113102016 modified "2023-10-14" @default.
- W3113102016 title "Implementation of a Lightweight Semantic Segmentation Algorithm in Road Obstacle Detection" @default.
- W3113102016 cites W2118246710 @default.
- W3113102016 cites W2395611524 @default.
- W3113102016 cites W2913972737 @default.
- W3113102016 cites W2932012013 @default.
- W3113102016 cites W2955787963 @default.
- W3113102016 cites W2963881378 @default.
- W3113102016 cites W2966702270 @default.
- W3113102016 cites W2982693298 @default.
- W3113102016 cites W3006197249 @default.
- W3113102016 cites W3012528238 @default.
- W3113102016 cites W3026316399 @default.
- W3113102016 cites W3038733909 @default.
- W3113102016 cites W3042173136 @default.
- W3113102016 cites W3088331655 @default.
- W3113102016 cites W3092319794 @default.
- W3113102016 cites W3101896960 @default.
- W3113102016 doi "https://doi.org/10.3390/s20247089" @default.
- W3113102016 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7763539" @default.
- W3113102016 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33322029" @default.
- W3113102016 hasPublicationYear "2020" @default.
- W3113102016 type Work @default.
- W3113102016 sameAs 3113102016 @default.
- W3113102016 citedByCount "1" @default.
- W3113102016 countsByYear W31131020162022 @default.
- W3113102016 crossrefType "journal-article" @default.
- W3113102016 hasAuthorship W3113102016A5036698882 @default.
- W3113102016 hasAuthorship W3113102016A5043110454 @default.
- W3113102016 hasAuthorship W3113102016A5048871276 @default.
- W3113102016 hasAuthorship W3113102016A5051094293 @default.
- W3113102016 hasBestOaLocation W31131020161 @default.
- W3113102016 hasConcept C108583219 @default.
- W3113102016 hasConcept C119857082 @default.
- W3113102016 hasConcept C124101348 @default.
- W3113102016 hasConcept C127413603 @default.
- W3113102016 hasConcept C138885662 @default.
- W3113102016 hasConcept C145804949 @default.
- W3113102016 hasConcept C146978453 @default.
- W3113102016 hasConcept C154945302 @default.
- W3113102016 hasConcept C17744445 @default.
- W3113102016 hasConcept C199539241 @default.
- W3113102016 hasConcept C2776401178 @default.
- W3113102016 hasConcept C2776650193 @default.
- W3113102016 hasConcept C31258907 @default.
- W3113102016 hasConcept C31972630 @default.
- W3113102016 hasConcept C41008148 @default.
- W3113102016 hasConcept C41895202 @default.
- W3113102016 hasConcept C81363708 @default.
- W3113102016 hasConcept C88796919 @default.
- W3113102016 hasConcept C89600930 @default.
- W3113102016 hasConceptScore W3113102016C108583219 @default.
- W3113102016 hasConceptScore W3113102016C119857082 @default.
- W3113102016 hasConceptScore W3113102016C124101348 @default.
- W3113102016 hasConceptScore W3113102016C127413603 @default.
- W3113102016 hasConceptScore W3113102016C138885662 @default.
- W3113102016 hasConceptScore W3113102016C145804949 @default.
- W3113102016 hasConceptScore W3113102016C146978453 @default.
- W3113102016 hasConceptScore W3113102016C154945302 @default.
- W3113102016 hasConceptScore W3113102016C17744445 @default.
- W3113102016 hasConceptScore W3113102016C199539241 @default.
- W3113102016 hasConceptScore W3113102016C2776401178 @default.
- W3113102016 hasConceptScore W3113102016C2776650193 @default.
- W3113102016 hasConceptScore W3113102016C31258907 @default.
- W3113102016 hasConceptScore W3113102016C31972630 @default.
- W3113102016 hasConceptScore W3113102016C41008148 @default.
- W3113102016 hasConceptScore W3113102016C41895202 @default.
- W3113102016 hasConceptScore W3113102016C81363708 @default.
- W3113102016 hasConceptScore W3113102016C88796919 @default.
- W3113102016 hasConceptScore W3113102016C89600930 @default.
- W3113102016 hasIssue "24" @default.
- W3113102016 hasLocation W31131020161 @default.
- W3113102016 hasLocation W31131020162 @default.
- W3113102016 hasOpenAccess W3113102016 @default.
- W3113102016 hasPrimaryLocation W31131020161 @default.
- W3113102016 hasRelatedWork W2051516969 @default.
- W3113102016 hasRelatedWork W2126807813 @default.
- W3113102016 hasRelatedWork W2337926734 @default.
- W3113102016 hasRelatedWork W3102253946 @default.
- W3113102016 hasRelatedWork W3144574764 @default.
- W3113102016 hasRelatedWork W4293211451 @default.
- W3113102016 hasRelatedWork W4308191152 @default.
- W3113102016 hasRelatedWork W4311257506 @default.
- W3113102016 hasRelatedWork W4320802194 @default.
- W3113102016 hasRelatedWork W4366224123 @default.
- W3113102016 hasVolume "20" @default.
- W3113102016 isParatext "false" @default.
- W3113102016 isRetracted "false" @default.
- W3113102016 magId "3113102016" @default.
- W3113102016 workType "article" @default.