Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113123892> ?p ?o ?g. }
- W3113123892 endingPage "781" @default.
- W3113123892 startingPage "772" @default.
- W3113123892 abstract "High-throughput electronic phenotyping algorithms can accelerate translational research using data from electronic health record (EHR) systems. The temporal information buried in EHRs is often underutilized in developing computational phenotypic definitions. This study aims to develop a high-throughput phenotyping method, leveraging temporal sequential patterns from EHRs.We develop a representation mining algorithm to extract 5 classes of representations from EHR diagnosis and medication records: the aggregated vector of the records (aggregated vector representation), the standard sequential patterns (sequential pattern mining), the transitive sequential patterns (transitive sequential pattern mining), and 2 hybrid classes. Using EHR data on 10 phenotypes from the Mass General Brigham Biobank, we train and validate phenotyping algorithms.Phenotyping with temporal sequences resulted in a superior classification performance across all 10 phenotypes compared with the standard representations in electronic phenotyping. The high-throughput algorithm's classification performance was superior or similar to the performance of previously published electronic phenotyping algorithms. We characterize and evaluate the top transitive sequences of diagnosis records paired with the records of risk factors, symptoms, complications, medications, or vaccinations.The proposed high-throughput phenotyping approach enables seamless discovery of sequential record combinations that may be difficult to assume from raw EHR data. Transitive sequences offer more accurate characterization of the phenotype, compared with its individual components, and reflect the actual lived experiences of the patients with that particular disease.Sequential data representations provide a precise mechanism for incorporating raw EHR records into downstream machine learning. Our approach starts with user interpretability and works backward to the technology." @default.
- W3113123892 created "2020-12-21" @default.
- W3113123892 creator A5006237435 @default.
- W3113123892 creator A5019738291 @default.
- W3113123892 creator A5087242254 @default.
- W3113123892 date "2020-12-14" @default.
- W3113123892 modified "2023-10-18" @default.
- W3113123892 title "High-throughput phenotyping with temporal sequences" @default.
- W3113123892 cites W1489755771 @default.
- W3113123892 cites W1498436455 @default.
- W3113123892 cites W1628282653 @default.
- W3113123892 cites W1808652302 @default.
- W3113123892 cites W1816688868 @default.
- W3113123892 cites W1961457095 @default.
- W3113123892 cites W1963948512 @default.
- W3113123892 cites W1967931674 @default.
- W3113123892 cites W1999664376 @default.
- W3113123892 cites W2004910511 @default.
- W3113123892 cites W2006776184 @default.
- W3113123892 cites W2012451988 @default.
- W3113123892 cites W2027867013 @default.
- W3113123892 cites W2030551400 @default.
- W3113123892 cites W2051743300 @default.
- W3113123892 cites W2057706627 @default.
- W3113123892 cites W2064337796 @default.
- W3113123892 cites W2064675550 @default.
- W3113123892 cites W2069720347 @default.
- W3113123892 cites W2080638714 @default.
- W3113123892 cites W2084525236 @default.
- W3113123892 cites W2086019232 @default.
- W3113123892 cites W2105637130 @default.
- W3113123892 cites W2109056977 @default.
- W3113123892 cites W2114584591 @default.
- W3113123892 cites W2114771311 @default.
- W3113123892 cites W2121382432 @default.
- W3113123892 cites W2122874925 @default.
- W3113123892 cites W2124785215 @default.
- W3113123892 cites W2136486905 @default.
- W3113123892 cites W2137548844 @default.
- W3113123892 cites W2138162199 @default.
- W3113123892 cites W2142071150 @default.
- W3113123892 cites W2146606092 @default.
- W3113123892 cites W2148563768 @default.
- W3113123892 cites W2284250673 @default.
- W3113123892 cites W2317648909 @default.
- W3113123892 cites W2356882517 @default.
- W3113123892 cites W2404901863 @default.
- W3113123892 cites W2518582440 @default.
- W3113123892 cites W2520392019 @default.
- W3113123892 cites W2559646245 @default.
- W3113123892 cites W259909490 @default.
- W3113123892 cites W2606287704 @default.
- W3113123892 cites W2607113351 @default.
- W3113123892 cites W2743925765 @default.
- W3113123892 cites W2748645708 @default.
- W3113123892 cites W2763115747 @default.
- W3113123892 cites W2765693998 @default.
- W3113123892 cites W2784168210 @default.
- W3113123892 cites W2802561155 @default.
- W3113123892 cites W2803290558 @default.
- W3113123892 cites W2805189200 @default.
- W3113123892 cites W2897007327 @default.
- W3113123892 cites W2913694856 @default.
- W3113123892 cites W2950722229 @default.
- W3113123892 cites W2964010366 @default.
- W3113123892 cites W2965414772 @default.
- W3113123892 cites W3036478487 @default.
- W3113123892 doi "https://doi.org/10.1093/jamia/ocaa288" @default.
- W3113123892 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7973443" @default.
- W3113123892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33313899" @default.
- W3113123892 hasPublicationYear "2020" @default.
- W3113123892 type Work @default.
- W3113123892 sameAs 3113123892 @default.
- W3113123892 citedByCount "15" @default.
- W3113123892 countsByYear W31131238922021 @default.
- W3113123892 countsByYear W31131238922022 @default.
- W3113123892 countsByYear W31131238922023 @default.
- W3113123892 crossrefType "journal-article" @default.
- W3113123892 hasAuthorship W3113123892A5006237435 @default.
- W3113123892 hasAuthorship W3113123892A5019738291 @default.
- W3113123892 hasAuthorship W3113123892A5087242254 @default.
- W3113123892 hasBestOaLocation W31131238922 @default.
- W3113123892 hasConcept C114614502 @default.
- W3113123892 hasConcept C116834253 @default.
- W3113123892 hasConcept C119857082 @default.
- W3113123892 hasConcept C124101348 @default.
- W3113123892 hasConcept C132964779 @default.
- W3113123892 hasConcept C154945302 @default.
- W3113123892 hasConcept C157764524 @default.
- W3113123892 hasConcept C17744445 @default.
- W3113123892 hasConcept C191399111 @default.
- W3113123892 hasConcept C199360897 @default.
- W3113123892 hasConcept C199539241 @default.
- W3113123892 hasConcept C2776359362 @default.
- W3113123892 hasConcept C2781067378 @default.
- W3113123892 hasConcept C33923547 @default.
- W3113123892 hasConcept C41008148 @default.
- W3113123892 hasConcept C555944384 @default.