Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113142509> ?p ?o ?g. }
- W3113142509 abstract "The article develops marginal models for multivariate longitudinal responses. Overall, the model consists of five regression submodels, one for the mean and four for the covariance matrix, with the latter resulting by considering various matrix decompositions. The decompositions that we employ are intuitive, easy to understand, and they do not rely on any assumptions such as the presence of an ordering among the multivariate responses. The regression submodels are semiparametric, with unknown functions represented by basis function expansions. We use spike-slap priors for the regression coefficients to achieve variable selection and function regularization, and to obtain parameter estimates that account for model uncertainty. An efficient Markov chain Monte Carlo algorithm for posterior sampling is developed. The simulation studies presented investigate the effects of priors on posteriors, the gains that one may have when considering multivariate longitudinal analyses instead of univariate ones, and whether these gains can counteract the negative effects of missing data. We apply the methods on a highly unbalanced longitudinal dataset with four responses observed over of period of 20 years" @default.
- W3113142509 created "2020-12-21" @default.
- W3113142509 creator A5074022847 @default.
- W3113142509 date "2020-12-17" @default.
- W3113142509 modified "2023-09-27" @default.
- W3113142509 title "Bayesian semiparametric modelling of covariance matrices for multivariate longitudinal data" @default.
- W3113142509 cites W1249696972 @default.
- W3113142509 cites W1492534149 @default.
- W3113142509 cites W171292237 @default.
- W3113142509 cites W1963558577 @default.
- W3113142509 cites W1965284210 @default.
- W3113142509 cites W1967062549 @default.
- W3113142509 cites W2004064635 @default.
- W3113142509 cites W2005384286 @default.
- W3113142509 cites W2008703230 @default.
- W3113142509 cites W2008721406 @default.
- W3113142509 cites W2015017235 @default.
- W3113142509 cites W2020389170 @default.
- W3113142509 cites W2023625069 @default.
- W3113142509 cites W2031147332 @default.
- W3113142509 cites W2034610158 @default.
- W3113142509 cites W2035295288 @default.
- W3113142509 cites W2037235765 @default.
- W3113142509 cites W2047978125 @default.
- W3113142509 cites W2069429561 @default.
- W3113142509 cites W2070404536 @default.
- W3113142509 cites W2071151696 @default.
- W3113142509 cites W2075807431 @default.
- W3113142509 cites W2084563301 @default.
- W3113142509 cites W2091797506 @default.
- W3113142509 cites W2094514178 @default.
- W3113142509 cites W2119104118 @default.
- W3113142509 cites W2122295078 @default.
- W3113142509 cites W2145370559 @default.
- W3113142509 cites W2160306985 @default.
- W3113142509 cites W2162166782 @default.
- W3113142509 cites W2162193517 @default.
- W3113142509 cites W2171050536 @default.
- W3113142509 cites W2210545460 @default.
- W3113142509 cites W2346092222 @default.
- W3113142509 cites W2808888682 @default.
- W3113142509 cites W2957523921 @default.
- W3113142509 cites W3101441543 @default.
- W3113142509 cites W3123551093 @default.
- W3113142509 cites W3146166473 @default.
- W3113142509 cites W3214323364 @default.
- W3113142509 cites W3145738572 @default.
- W3113142509 hasPublicationYear "2020" @default.
- W3113142509 type Work @default.
- W3113142509 sameAs 3113142509 @default.
- W3113142509 citedByCount "0" @default.
- W3113142509 crossrefType "posted-content" @default.
- W3113142509 hasAuthorship W3113142509A5074022847 @default.
- W3113142509 hasConcept C105795698 @default.
- W3113142509 hasConcept C107673813 @default.
- W3113142509 hasConcept C111350023 @default.
- W3113142509 hasConcept C149782125 @default.
- W3113142509 hasConcept C161584116 @default.
- W3113142509 hasConcept C177769412 @default.
- W3113142509 hasConcept C178650346 @default.
- W3113142509 hasConcept C185142706 @default.
- W3113142509 hasConcept C19539793 @default.
- W3113142509 hasConcept C199163554 @default.
- W3113142509 hasConcept C28826006 @default.
- W3113142509 hasConcept C33923547 @default.
- W3113142509 hasConcept C83546350 @default.
- W3113142509 hasConcept C9357733 @default.
- W3113142509 hasConceptScore W3113142509C105795698 @default.
- W3113142509 hasConceptScore W3113142509C107673813 @default.
- W3113142509 hasConceptScore W3113142509C111350023 @default.
- W3113142509 hasConceptScore W3113142509C149782125 @default.
- W3113142509 hasConceptScore W3113142509C161584116 @default.
- W3113142509 hasConceptScore W3113142509C177769412 @default.
- W3113142509 hasConceptScore W3113142509C178650346 @default.
- W3113142509 hasConceptScore W3113142509C185142706 @default.
- W3113142509 hasConceptScore W3113142509C19539793 @default.
- W3113142509 hasConceptScore W3113142509C199163554 @default.
- W3113142509 hasConceptScore W3113142509C28826006 @default.
- W3113142509 hasConceptScore W3113142509C33923547 @default.
- W3113142509 hasConceptScore W3113142509C83546350 @default.
- W3113142509 hasConceptScore W3113142509C9357733 @default.
- W3113142509 hasLocation W31131425091 @default.
- W3113142509 hasOpenAccess W3113142509 @default.
- W3113142509 hasPrimaryLocation W31131425091 @default.
- W3113142509 hasRelatedWork W1823757831 @default.
- W3113142509 hasRelatedWork W1972335972 @default.
- W3113142509 hasRelatedWork W2006336297 @default.
- W3113142509 hasRelatedWork W2031147332 @default.
- W3113142509 hasRelatedWork W2059900310 @default.
- W3113142509 hasRelatedWork W229079296 @default.
- W3113142509 hasRelatedWork W2320653919 @default.
- W3113142509 hasRelatedWork W2562737881 @default.
- W3113142509 hasRelatedWork W2917971019 @default.
- W3113142509 hasRelatedWork W2949195728 @default.
- W3113142509 hasRelatedWork W2952149315 @default.
- W3113142509 hasRelatedWork W3048697938 @default.
- W3113142509 hasRelatedWork W3094279020 @default.
- W3113142509 hasRelatedWork W3105535713 @default.
- W3113142509 hasRelatedWork W3121753228 @default.
- W3113142509 hasRelatedWork W3123551093 @default.