Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113144752> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3113144752 endingPage "877" @default.
- W3113144752 startingPage "869" @default.
- W3113144752 abstract "The plethora of ways of data representation and their applications to system modeling is inherently associated with dimensionality reduction. In a nutshell, the result of dimensionality reduction should support efficient ways of constructing ensuing models (classifiers and predictors) as well as an interpretation of the data themselves. Furthermore, there should be a suitable measure quantifying the quality of data positioned in the reduced space. We advocate that what makes the reduced data interpretable goes hand in hand with revealing a logic fabric of the data, suppressing redundancy, and finally arriving at a logic description of data. The anticipation is that the reduced data can be described in the form of logic expressions formed over the original highly dimensional data. Evidently, having these above-stated points in mind, the aim of this article is twofold: 1) to develop a logic-oriented data representation with the aid of autoencoders; and 2) to quantify the quality of results of this dimensionality reduction by incorporating a facet of information granularity. In other words, we argue that the result of dimensionality reduction gives rise to information granules whose level of granularity associates with the quality of processing completed by the autoencoder. In light of the recent surge of architectures of deep learning, the study is focused on the construction and analysis of logic-oriented autoencoders. We propose a two-level architecture composed of the logic-oriented processing units organized in two layers of logic processing units. As data representation provided by the autoencoder is not ideal, we augment the original architecture by granular parameters, which give rise to granular logic-oriented autoencoders. A suite of experiments is also reported." @default.
- W3113144752 created "2020-12-21" @default.
- W3113144752 creator A5003799782 @default.
- W3113144752 creator A5039184854 @default.
- W3113144752 creator A5042842366 @default.
- W3113144752 creator A5089610480 @default.
- W3113144752 date "2022-03-01" @default.
- W3113144752 modified "2023-10-18" @default.
- W3113144752 title "Logic-Oriented Autoencoders and Granular Logic Autoencoders: Developing Interpretable Data Representation" @default.
- W3113144752 cites W1575538451 @default.
- W3113144752 cites W1581984155 @default.
- W3113144752 cites W2018113971 @default.
- W3113144752 cites W2018456637 @default.
- W3113144752 cites W2051812123 @default.
- W3113144752 cites W2071709160 @default.
- W3113144752 cites W2113076747 @default.
- W3113144752 cites W2153676086 @default.
- W3113144752 cites W2609731728 @default.
- W3113144752 cites W2737079090 @default.
- W3113144752 cites W2900507847 @default.
- W3113144752 cites W2919115771 @default.
- W3113144752 cites W2922251441 @default.
- W3113144752 cites W2965031958 @default.
- W3113144752 doi "https://doi.org/10.1109/tfuzz.2020.3043659" @default.
- W3113144752 hasPublicationYear "2022" @default.
- W3113144752 type Work @default.
- W3113144752 sameAs 3113144752 @default.
- W3113144752 citedByCount "7" @default.
- W3113144752 countsByYear W31131447522022 @default.
- W3113144752 countsByYear W31131447522023 @default.
- W3113144752 crossrefType "journal-article" @default.
- W3113144752 hasAuthorship W3113144752A5003799782 @default.
- W3113144752 hasAuthorship W3113144752A5039184854 @default.
- W3113144752 hasAuthorship W3113144752A5042842366 @default.
- W3113144752 hasAuthorship W3113144752A5089610480 @default.
- W3113144752 hasConcept C101738243 @default.
- W3113144752 hasConcept C111030470 @default.
- W3113144752 hasConcept C111919701 @default.
- W3113144752 hasConcept C113839178 @default.
- W3113144752 hasConcept C119857082 @default.
- W3113144752 hasConcept C153180895 @default.
- W3113144752 hasConcept C154945302 @default.
- W3113144752 hasConcept C177774035 @default.
- W3113144752 hasConcept C41008148 @default.
- W3113144752 hasConcept C49937458 @default.
- W3113144752 hasConcept C50644808 @default.
- W3113144752 hasConcept C70518039 @default.
- W3113144752 hasConcept C80444323 @default.
- W3113144752 hasConceptScore W3113144752C101738243 @default.
- W3113144752 hasConceptScore W3113144752C111030470 @default.
- W3113144752 hasConceptScore W3113144752C111919701 @default.
- W3113144752 hasConceptScore W3113144752C113839178 @default.
- W3113144752 hasConceptScore W3113144752C119857082 @default.
- W3113144752 hasConceptScore W3113144752C153180895 @default.
- W3113144752 hasConceptScore W3113144752C154945302 @default.
- W3113144752 hasConceptScore W3113144752C177774035 @default.
- W3113144752 hasConceptScore W3113144752C41008148 @default.
- W3113144752 hasConceptScore W3113144752C49937458 @default.
- W3113144752 hasConceptScore W3113144752C50644808 @default.
- W3113144752 hasConceptScore W3113144752C70518039 @default.
- W3113144752 hasConceptScore W3113144752C80444323 @default.
- W3113144752 hasIssue "3" @default.
- W3113144752 hasLocation W31131447521 @default.
- W3113144752 hasOpenAccess W3113144752 @default.
- W3113144752 hasPrimaryLocation W31131447521 @default.
- W3113144752 hasRelatedWork W1552543208 @default.
- W3113144752 hasRelatedWork W1641615907 @default.
- W3113144752 hasRelatedWork W1995622179 @default.
- W3113144752 hasRelatedWork W2002563186 @default.
- W3113144752 hasRelatedWork W2074396517 @default.
- W3113144752 hasRelatedWork W2166963679 @default.
- W3113144752 hasRelatedWork W2355395139 @default.
- W3113144752 hasRelatedWork W4285596704 @default.
- W3113144752 hasRelatedWork W4310873165 @default.
- W3113144752 hasRelatedWork W2187269125 @default.
- W3113144752 hasVolume "30" @default.
- W3113144752 isParatext "false" @default.
- W3113144752 isRetracted "false" @default.
- W3113144752 magId "3113144752" @default.
- W3113144752 workType "article" @default.