Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113150976> ?p ?o ?g. }
- W3113150976 endingPage "109019" @default.
- W3113150976 startingPage "109019" @default.
- W3113150976 abstract "Early diagnosis of Parkinson’s disease (PD) enables timely treatment of patients and helps control the course of the disease. An efficient and reliable approach is therefore needed to develop for improving the clinical ability to diagnose this disease. We proposed a two-layer stacking ensemble learning framework with fusing multi-modal features in this study, for accurately identifying early PD with healthy control (HC). To begin with, we investigated relative importance of multi-modal neuroimaging (T1 weighted image (T1WI), diffusion tensor imaging (DTI)) and early clinical assessment to classify PD and HC. Next, a two-layer stacking ensemble framework was proposed: at the first layer, we evaluated advantages of these four base classifiers: support vector machine (SVM), random forests (RF), K-nearest neighbor (KNN) and artificial neural network (ANN); at the second layer, a logistic regression (LR) classifier was applied to classify PD. The performance of the proposed model was evaluated by comparing with traditional ensemble models. The proposed method performed an accuracy of 96.88 %, a precision of 100 %, a recall of 95 % and a F1 score of 97.44 % respectively for identifying PD and HC. The classification results showed that the proposed model achieved a superior performance in comparison with traditional ensemble models. The stacking ensemble model with efficiently and effectively integrate multiple base classifiers performed higher accuracy than each single traditional model. The method developed in this study provided a novel strategy to enhance the accuracy of diagnosis and early detection of PD." @default.
- W3113150976 created "2020-12-21" @default.
- W3113150976 creator A5010555402 @default.
- W3113150976 creator A5024348788 @default.
- W3113150976 creator A5032142225 @default.
- W3113150976 creator A5042363663 @default.
- W3113150976 creator A5044849232 @default.
- W3113150976 creator A5047565099 @default.
- W3113150976 date "2021-02-01" @default.
- W3113150976 modified "2023-10-06" @default.
- W3113150976 title "Classification of Parkinson's disease based on multi-modal features and stacking ensemble learning" @default.
- W3113150976 cites W1739933320 @default.
- W3113150976 cites W1973679736 @default.
- W3113150976 cites W1997147102 @default.
- W3113150976 cites W1997169200 @default.
- W3113150976 cites W2058046532 @default.
- W3113150976 cites W2058970538 @default.
- W3113150976 cites W2065414989 @default.
- W3113150976 cites W2077684881 @default.
- W3113150976 cites W2088252378 @default.
- W3113150976 cites W2095649738 @default.
- W3113150976 cites W2098703664 @default.
- W3113150976 cites W2117535122 @default.
- W3113150976 cites W2142743506 @default.
- W3113150976 cites W2151554678 @default.
- W3113150976 cites W2155298532 @default.
- W3113150976 cites W2162615325 @default.
- W3113150976 cites W2290432223 @default.
- W3113150976 cites W2339677357 @default.
- W3113150976 cites W2599637679 @default.
- W3113150976 cites W2768838319 @default.
- W3113150976 cites W2803727374 @default.
- W3113150976 cites W28412257 @default.
- W3113150976 cites W2899037650 @default.
- W3113150976 cites W2902620820 @default.
- W3113150976 cites W2911964244 @default.
- W3113150976 cites W2922768692 @default.
- W3113150976 cites W2945972601 @default.
- W3113150976 cites W4239510810 @default.
- W3113150976 cites W4376453200 @default.
- W3113150976 cites W2125392923 @default.
- W3113150976 doi "https://doi.org/10.1016/j.jneumeth.2020.109019" @default.
- W3113150976 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33321153" @default.
- W3113150976 hasPublicationYear "2021" @default.
- W3113150976 type Work @default.
- W3113150976 sameAs 3113150976 @default.
- W3113150976 citedByCount "28" @default.
- W3113150976 countsByYear W31131509762021 @default.
- W3113150976 countsByYear W31131509762022 @default.
- W3113150976 countsByYear W31131509762023 @default.
- W3113150976 crossrefType "journal-article" @default.
- W3113150976 hasAuthorship W3113150976A5010555402 @default.
- W3113150976 hasAuthorship W3113150976A5024348788 @default.
- W3113150976 hasAuthorship W3113150976A5032142225 @default.
- W3113150976 hasAuthorship W3113150976A5042363663 @default.
- W3113150976 hasAuthorship W3113150976A5044849232 @default.
- W3113150976 hasAuthorship W3113150976A5047565099 @default.
- W3113150976 hasConcept C119857082 @default.
- W3113150976 hasConcept C121332964 @default.
- W3113150976 hasConcept C12267149 @default.
- W3113150976 hasConcept C151956035 @default.
- W3113150976 hasConcept C153180895 @default.
- W3113150976 hasConcept C154945302 @default.
- W3113150976 hasConcept C169258074 @default.
- W3113150976 hasConcept C33347731 @default.
- W3113150976 hasConcept C41008148 @default.
- W3113150976 hasConcept C45942800 @default.
- W3113150976 hasConcept C46141821 @default.
- W3113150976 hasConcept C50644808 @default.
- W3113150976 hasConcept C95623464 @default.
- W3113150976 hasConceptScore W3113150976C119857082 @default.
- W3113150976 hasConceptScore W3113150976C121332964 @default.
- W3113150976 hasConceptScore W3113150976C12267149 @default.
- W3113150976 hasConceptScore W3113150976C151956035 @default.
- W3113150976 hasConceptScore W3113150976C153180895 @default.
- W3113150976 hasConceptScore W3113150976C154945302 @default.
- W3113150976 hasConceptScore W3113150976C169258074 @default.
- W3113150976 hasConceptScore W3113150976C33347731 @default.
- W3113150976 hasConceptScore W3113150976C41008148 @default.
- W3113150976 hasConceptScore W3113150976C45942800 @default.
- W3113150976 hasConceptScore W3113150976C46141821 @default.
- W3113150976 hasConceptScore W3113150976C50644808 @default.
- W3113150976 hasConceptScore W3113150976C95623464 @default.
- W3113150976 hasFunder F4320321001 @default.
- W3113150976 hasLocation W31131509761 @default.
- W3113150976 hasOpenAccess W3113150976 @default.
- W3113150976 hasPrimaryLocation W31131509761 @default.
- W3113150976 hasRelatedWork W2140937121 @default.
- W3113150976 hasRelatedWork W3195168932 @default.
- W3113150976 hasRelatedWork W4226239449 @default.
- W3113150976 hasRelatedWork W4281560664 @default.
- W3113150976 hasRelatedWork W4318350883 @default.
- W3113150976 hasRelatedWork W4319430317 @default.
- W3113150976 hasRelatedWork W4321636153 @default.
- W3113150976 hasRelatedWork W4375930479 @default.
- W3113150976 hasRelatedWork W4383535405 @default.
- W3113150976 hasRelatedWork W4386123260 @default.
- W3113150976 hasVolume "350" @default.