Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113160524> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3113160524 abstract "We consider the operators [ nabla_Xcdot(A(X)nabla_X), nabla_Xcdot(A(X)nabla_X)-partial_t, nabla_Xcdot(A(X)nabla_X)+Xcdotnabla_Y-partial_t, ] where $Xin Omega$, $(X,t)in Omegatimes mathbb R$ and $(X,Y,t)in Omegatimes mathbb R^mtimes mathbb R$, respectively, and where $Omegasubsetmathbb R^m$ is a (unbounded) Lipschitz domain with defining function $psi:mathbb R^{m-1}tomathbb R$ being Lipschitz with constant bounded by $M$. Assume that the elliptic measure associated to the first of these operators is mutually absolutely continuous with respect to the surface measure $mathrm{d} sigma(X)$, and that the corresponding Radon-Nikodym derivative or Poisson kernel satisfies a scale invariant reverse Holder inequality in $L^p$, for some fixed $p$, $1<p<infty$, with constants depending only on the constants of $A$, $m$ and the Lipschitz constant of $psi$, $M$. Under this assumption we prove that then the same conclusions are also true for the parabolic measures associated to the second and third operator with $mathrm{d} sigma(X)$ replaced by the surface measures $mathrm{d} sigma(X)mathrm{d} t$ and $mathrm{d} sigma(X)mathrm{d} Ymathrm{d} t$, respectively. This structural theorem allows us to reprove several results previously established in the literature as well as to deduce new results in, for example, the context of homogenization for operators of Kolmogorov type. Our proof of the structural theorem is based on recent results established by the authors concerning boundary Harnack inequalities for operators of Kolmogorov type in divergence form with bounded, measurable and uniformly elliptic coefficients." @default.
- W3113160524 created "2020-12-21" @default.
- W3113160524 creator A5042010723 @default.
- W3113160524 creator A5079201607 @default.
- W3113160524 date "2020-12-14" @default.
- W3113160524 modified "2023-09-30" @default.
- W3113160524 title "A structure theorem for elliptic and parabolic operators with applications to homogenization of operators of Kolmogorov type" @default.
- W3113160524 cites W1506041086 @default.
- W3113160524 cites W1520256736 @default.
- W3113160524 cites W1528337088 @default.
- W3113160524 cites W1553150814 @default.
- W3113160524 cites W1594351698 @default.
- W3113160524 cites W180116548 @default.
- W3113160524 cites W1866311589 @default.
- W3113160524 cites W2021268474 @default.
- W3113160524 cites W2044587665 @default.
- W3113160524 cites W2054431537 @default.
- W3113160524 cites W2059358061 @default.
- W3113160524 cites W2078169974 @default.
- W3113160524 cites W2564060287 @default.
- W3113160524 cites W2744602906 @default.
- W3113160524 cites W2963822970 @default.
- W3113160524 cites W3113070001 @default.
- W3113160524 cites W562489929 @default.
- W3113160524 cites W652521108 @default.
- W3113160524 doi "https://doi.org/10.2140/apde.2023.16.1547" @default.
- W3113160524 hasPublicationYear "2020" @default.
- W3113160524 type Work @default.
- W3113160524 sameAs 3113160524 @default.
- W3113160524 citedByCount "1" @default.
- W3113160524 countsByYear W31131605242020 @default.
- W3113160524 crossrefType "posted-content" @default.
- W3113160524 hasAuthorship W3113160524A5042010723 @default.
- W3113160524 hasAuthorship W3113160524A5079201607 @default.
- W3113160524 hasBestOaLocation W31131605241 @default.
- W3113160524 hasConcept C114614502 @default.
- W3113160524 hasConcept C121332964 @default.
- W3113160524 hasConcept C130217890 @default.
- W3113160524 hasConcept C134306372 @default.
- W3113160524 hasConcept C18903297 @default.
- W3113160524 hasConcept C22324862 @default.
- W3113160524 hasConcept C2777299769 @default.
- W3113160524 hasConcept C2777984123 @default.
- W3113160524 hasConcept C2778722038 @default.
- W3113160524 hasConcept C2779557605 @default.
- W3113160524 hasConcept C33923547 @default.
- W3113160524 hasConcept C54207081 @default.
- W3113160524 hasConcept C62520636 @default.
- W3113160524 hasConcept C70610323 @default.
- W3113160524 hasConcept C86803240 @default.
- W3113160524 hasConceptScore W3113160524C114614502 @default.
- W3113160524 hasConceptScore W3113160524C121332964 @default.
- W3113160524 hasConceptScore W3113160524C130217890 @default.
- W3113160524 hasConceptScore W3113160524C134306372 @default.
- W3113160524 hasConceptScore W3113160524C18903297 @default.
- W3113160524 hasConceptScore W3113160524C22324862 @default.
- W3113160524 hasConceptScore W3113160524C2777299769 @default.
- W3113160524 hasConceptScore W3113160524C2777984123 @default.
- W3113160524 hasConceptScore W3113160524C2778722038 @default.
- W3113160524 hasConceptScore W3113160524C2779557605 @default.
- W3113160524 hasConceptScore W3113160524C33923547 @default.
- W3113160524 hasConceptScore W3113160524C54207081 @default.
- W3113160524 hasConceptScore W3113160524C62520636 @default.
- W3113160524 hasConceptScore W3113160524C70610323 @default.
- W3113160524 hasConceptScore W3113160524C86803240 @default.
- W3113160524 hasLocation W31131605241 @default.
- W3113160524 hasLocation W31131605242 @default.
- W3113160524 hasOpenAccess W3113160524 @default.
- W3113160524 hasPrimaryLocation W31131605241 @default.
- W3113160524 hasRelatedWork W1501319262 @default.
- W3113160524 hasRelatedWork W1985878137 @default.
- W3113160524 hasRelatedWork W1992592681 @default.
- W3113160524 hasRelatedWork W2904463458 @default.
- W3113160524 hasRelatedWork W2951497608 @default.
- W3113160524 hasRelatedWork W2969540319 @default.
- W3113160524 hasRelatedWork W3017250394 @default.
- W3113160524 hasRelatedWork W4289115868 @default.
- W3113160524 hasRelatedWork W4306294866 @default.
- W3113160524 hasRelatedWork W4312834788 @default.
- W3113160524 isParatext "false" @default.
- W3113160524 isRetracted "false" @default.
- W3113160524 magId "3113160524" @default.
- W3113160524 workType "article" @default.