Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113173655> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3113173655 abstract "Deep Learning is often criticized as being a black-box method that provides accurate predictions, but a limited explanation of the underlying processes and no indication when to not trust those predictions. Equipping existing deep learning models with an (general) notion of uncertainty can help mitigate both these issues. The Bayesian deep learning community has developed model-agnostic methodology to estimate both data and model uncertainty that can be implemented on top of existing deep learning models. In this work, we test this methodology for deep recurrent satellite time series forecasting and test its assumptions on data and model uncertainty. We tested its effectiveness on an application on climate change where the activity of seasonal vegetation decreased over multiple years." @default.
- W3113173655 created "2020-12-21" @default.
- W3113173655 creator A5029186201 @default.
- W3113173655 creator A5036934454 @default.
- W3113173655 creator A5050485192 @default.
- W3113173655 creator A5068384981 @default.
- W3113173655 creator A5079258186 @default.
- W3113173655 date "2020-09-26" @default.
- W3113173655 modified "2023-10-11" @default.
- W3113173655 title "Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent Models" @default.
- W3113173655 cites W1968718753 @default.
- W3113173655 cites W2055718260 @default.
- W3113173655 cites W2064675550 @default.
- W3113173655 cites W2079605058 @default.
- W3113173655 cites W2117996123 @default.
- W3113173655 cites W2138751033 @default.
- W3113173655 cites W2913323966 @default.
- W3113173655 doi "https://doi.org/10.1109/igarss39084.2020.9323890" @default.
- W3113173655 hasPublicationYear "2020" @default.
- W3113173655 type Work @default.
- W3113173655 sameAs 3113173655 @default.
- W3113173655 citedByCount "6" @default.
- W3113173655 countsByYear W31131736552021 @default.
- W3113173655 countsByYear W31131736552023 @default.
- W3113173655 crossrefType "proceedings-article" @default.
- W3113173655 hasAuthorship W3113173655A5029186201 @default.
- W3113173655 hasAuthorship W3113173655A5036934454 @default.
- W3113173655 hasAuthorship W3113173655A5050485192 @default.
- W3113173655 hasAuthorship W3113173655A5068384981 @default.
- W3113173655 hasAuthorship W3113173655A5079258186 @default.
- W3113173655 hasBestOaLocation W31131736552 @default.
- W3113173655 hasConcept C107673813 @default.
- W3113173655 hasConcept C108583219 @default.
- W3113173655 hasConcept C119857082 @default.
- W3113173655 hasConcept C127413603 @default.
- W3113173655 hasConcept C146978453 @default.
- W3113173655 hasConcept C151406439 @default.
- W3113173655 hasConcept C154945302 @default.
- W3113173655 hasConcept C19269812 @default.
- W3113173655 hasConcept C32230216 @default.
- W3113173655 hasConcept C41008148 @default.
- W3113173655 hasConcept C67186912 @default.
- W3113173655 hasConcept C77088390 @default.
- W3113173655 hasConcept C94966114 @default.
- W3113173655 hasConceptScore W3113173655C107673813 @default.
- W3113173655 hasConceptScore W3113173655C108583219 @default.
- W3113173655 hasConceptScore W3113173655C119857082 @default.
- W3113173655 hasConceptScore W3113173655C127413603 @default.
- W3113173655 hasConceptScore W3113173655C146978453 @default.
- W3113173655 hasConceptScore W3113173655C151406439 @default.
- W3113173655 hasConceptScore W3113173655C154945302 @default.
- W3113173655 hasConceptScore W3113173655C19269812 @default.
- W3113173655 hasConceptScore W3113173655C32230216 @default.
- W3113173655 hasConceptScore W3113173655C41008148 @default.
- W3113173655 hasConceptScore W3113173655C67186912 @default.
- W3113173655 hasConceptScore W3113173655C77088390 @default.
- W3113173655 hasConceptScore W3113173655C94966114 @default.
- W3113173655 hasLocation W31131736551 @default.
- W3113173655 hasLocation W31131736552 @default.
- W3113173655 hasOpenAccess W3113173655 @default.
- W3113173655 hasPrimaryLocation W31131736551 @default.
- W3113173655 hasRelatedWork W3014300295 @default.
- W3113173655 hasRelatedWork W3164822677 @default.
- W3113173655 hasRelatedWork W4223943233 @default.
- W3113173655 hasRelatedWork W4225161397 @default.
- W3113173655 hasRelatedWork W4250304930 @default.
- W3113173655 hasRelatedWork W4312200629 @default.
- W3113173655 hasRelatedWork W4360585206 @default.
- W3113173655 hasRelatedWork W4364306694 @default.
- W3113173655 hasRelatedWork W4380075502 @default.
- W3113173655 hasRelatedWork W4380086463 @default.
- W3113173655 isParatext "false" @default.
- W3113173655 isRetracted "false" @default.
- W3113173655 magId "3113173655" @default.
- W3113173655 workType "article" @default.