Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113189853> ?p ?o ?g. }
- W3113189853 abstract "In order to better understand the hydroplaning phenomenon, local velocity measurements of water flow are performed inside the tire grooves of a real car rolling through a water puddle. Velocity fields are obtained by combining refraction Particle Image Velocimetry (r-PIV) illumination, seeding fluorescent particles, and either the classical two dimensional two components or the two dimensional three components stereoscopic recording arrangements. The presence of some bubble columns inside the grooves is highlighted by separate visualization using the fluorescent contrast technique evidencing two phase flow characteristics. A simple predictive model is proposed supporting the r-PIV analysis. It provides useful information to adjust the focusing distance and to understand the effect of the bubble column presence on the recorded r-PIV images, especially for the seeding particles located in the upper part of the grooves, as fluorescent light is attenuated by the bubbles. Also, the predictions provided by the model are compatible with the measurements. The velocity fields inside the grooves are analyzed using ensemble averaging performed over a set of independent snapshots, recorded with the same operating parameters. The variability of the longitudinal velocity distribution measured in a groove for several independent runs is explained by different mechanisms, like the random position of fluorescent seeding particles at various heights of the groove, the hydrodynamic interactions between longitudinal and transverse grooves, and the random location of the transverse grooves from one run to another. Three velocity components in cross sections of the longitudinal grooves are obtained using the stereoscopic arrangement. They are compatible with the presence of some longitudinal vortices assumed in the literature. The number of vortices is shown to be dependent on the aspect ratio characterizing a groove's rectangular cross section. We demonstrate, from measurements performed for several car velocities, that the velocity distribution inside longitudinal grooves shows self-similarity when using specific dimensionless length and velocity scales. Hydrodynamic interactions between longitudinal and transverse grooves are discussed on the basis of a mass budget; a fluid/structure interaction mechanism is proposed in order to correlate the overall direction of the flow in a transverse groove with its location inside the contact zone. Finally, some physical mechanisms are suggested for the birth of longitudinal vortices." @default.
- W3113189853 created "2020-12-21" @default.
- W3113189853 creator A5021487741 @default.
- W3113189853 creator A5021770323 @default.
- W3113189853 creator A5035800856 @default.
- W3113189853 creator A5056307226 @default.
- W3113189853 creator A5059544332 @default.
- W3113189853 creator A5065861616 @default.
- W3113189853 creator A5076735797 @default.
- W3113189853 date "2021-03-01" @default.
- W3113189853 modified "2023-10-14" @default.
- W3113189853 title "Analysis of the water flow inside tire grooves of a rolling car using refraction particle image velocimetry" @default.
- W3113189853 cites W141760640 @default.
- W3113189853 cites W1989477602 @default.
- W3113189853 cites W2003834725 @default.
- W3113189853 cites W2007967130 @default.
- W3113189853 cites W2047316513 @default.
- W3113189853 cites W2047813285 @default.
- W3113189853 cites W2054920566 @default.
- W3113189853 cites W2067145487 @default.
- W3113189853 cites W2068175209 @default.
- W3113189853 cites W2075000718 @default.
- W3113189853 cites W2078288510 @default.
- W3113189853 cites W2081181885 @default.
- W3113189853 cites W2087027670 @default.
- W3113189853 cites W2094043750 @default.
- W3113189853 cites W2108146547 @default.
- W3113189853 cites W2118944048 @default.
- W3113189853 cites W2127684863 @default.
- W3113189853 cites W2143067558 @default.
- W3113189853 cites W2437190120 @default.
- W3113189853 cites W2759666411 @default.
- W3113189853 cites W2761494048 @default.
- W3113189853 cites W2898188568 @default.
- W3113189853 cites W2944056898 @default.
- W3113189853 cites W2982640086 @default.
- W3113189853 cites W3005254636 @default.
- W3113189853 cites W3023476177 @default.
- W3113189853 cites W3045194431 @default.
- W3113189853 cites W3107937431 @default.
- W3113189853 doi "https://doi.org/10.1063/5.0038834" @default.
- W3113189853 hasPublicationYear "2021" @default.
- W3113189853 type Work @default.
- W3113189853 sameAs 3113189853 @default.
- W3113189853 citedByCount "4" @default.
- W3113189853 countsByYear W31131898532021 @default.
- W3113189853 countsByYear W31131898532022 @default.
- W3113189853 countsByYear W31131898532023 @default.
- W3113189853 crossrefType "journal-article" @default.
- W3113189853 hasAuthorship W3113189853A5021487741 @default.
- W3113189853 hasAuthorship W3113189853A5021770323 @default.
- W3113189853 hasAuthorship W3113189853A5035800856 @default.
- W3113189853 hasAuthorship W3113189853A5056307226 @default.
- W3113189853 hasAuthorship W3113189853A5059544332 @default.
- W3113189853 hasAuthorship W3113189853A5065861616 @default.
- W3113189853 hasAuthorship W3113189853A5076735797 @default.
- W3113189853 hasBestOaLocation W31131898532 @default.
- W3113189853 hasConcept C111368507 @default.
- W3113189853 hasConcept C120665830 @default.
- W3113189853 hasConcept C121332964 @default.
- W3113189853 hasConcept C127313418 @default.
- W3113189853 hasConcept C127413603 @default.
- W3113189853 hasConcept C144836735 @default.
- W3113189853 hasConcept C154954056 @default.
- W3113189853 hasConcept C166693061 @default.
- W3113189853 hasConcept C177274176 @default.
- W3113189853 hasConcept C191897082 @default.
- W3113189853 hasConcept C192562407 @default.
- W3113189853 hasConcept C196558001 @default.
- W3113189853 hasConcept C205318122 @default.
- W3113189853 hasConcept C207857233 @default.
- W3113189853 hasConcept C2778517922 @default.
- W3113189853 hasConcept C2779472054 @default.
- W3113189853 hasConcept C36248471 @default.
- W3113189853 hasConcept C38349280 @default.
- W3113189853 hasConcept C57879066 @default.
- W3113189853 hasConcept C66938386 @default.
- W3113189853 hasConcept C83893533 @default.
- W3113189853 hasConcept C97355855 @default.
- W3113189853 hasConceptScore W3113189853C111368507 @default.
- W3113189853 hasConceptScore W3113189853C120665830 @default.
- W3113189853 hasConceptScore W3113189853C121332964 @default.
- W3113189853 hasConceptScore W3113189853C127313418 @default.
- W3113189853 hasConceptScore W3113189853C127413603 @default.
- W3113189853 hasConceptScore W3113189853C144836735 @default.
- W3113189853 hasConceptScore W3113189853C154954056 @default.
- W3113189853 hasConceptScore W3113189853C166693061 @default.
- W3113189853 hasConceptScore W3113189853C177274176 @default.
- W3113189853 hasConceptScore W3113189853C191897082 @default.
- W3113189853 hasConceptScore W3113189853C192562407 @default.
- W3113189853 hasConceptScore W3113189853C196558001 @default.
- W3113189853 hasConceptScore W3113189853C205318122 @default.
- W3113189853 hasConceptScore W3113189853C207857233 @default.
- W3113189853 hasConceptScore W3113189853C2778517922 @default.
- W3113189853 hasConceptScore W3113189853C2779472054 @default.
- W3113189853 hasConceptScore W3113189853C36248471 @default.
- W3113189853 hasConceptScore W3113189853C38349280 @default.
- W3113189853 hasConceptScore W3113189853C57879066 @default.
- W3113189853 hasConceptScore W3113189853C66938386 @default.
- W3113189853 hasConceptScore W3113189853C83893533 @default.