Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113199772> ?p ?o ?g. }
- W3113199772 endingPage "4039" @default.
- W3113199772 startingPage "4039" @default.
- W3113199772 abstract "The measurement of forestry trials is a costly and time-consuming process. Over the past few years, unmanned aerial vehicles (UAVs) have provided some significant developments that could improve cost and time efficiencies. However, little research has examined the accuracies of these technologies for measuring young trees. This study compared the data captured by a UAV laser scanning system (ULS), and UAV structure from motion photogrammetry (SfM), with traditional field-measured heights in a series of forestry trials in the central North Island of New Zealand. Data were captured from UAVs, and then processed into point clouds, from which heights were derived and compared to field measurements. The results show that predictions from both ULS and SfM were very strongly correlated to tree heights (R2 = 0.99, RMSE = 5.91%, and R2 = 0.94, RMSE = 18.5%, respectively) but that the height underprediction was markedly lower for ULS than SfM (Mean Bias Error = 0.05 vs. 0.38 m). Integration of a ULS DTM to the SfM made a minor improvement in precision (R2 = 0.95, RMSE = 16.5%). Through plotting error against tree height, we identified a minimum threshold of 1 m, under which the accuracy of height measurements using ULS and SfM significantly declines. Our results show that SfM and ULS data collected from UAV remote sensing can be used to accurately measure height in young forestry trials. It is hoped that this study will give foresters and tree breeders the confidence to start to operationalise this technology for monitoring trials." @default.
- W3113199772 created "2020-12-21" @default.
- W3113199772 creator A5004956625 @default.
- W3113199772 creator A5032721192 @default.
- W3113199772 creator A5039172637 @default.
- W3113199772 creator A5066690983 @default.
- W3113199772 creator A5070406793 @default.
- W3113199772 creator A5073649293 @default.
- W3113199772 creator A5076760700 @default.
- W3113199772 creator A5079458590 @default.
- W3113199772 date "2020-12-10" @default.
- W3113199772 modified "2023-09-27" @default.
- W3113199772 title "An Assessment of High-Density UAV Point Clouds for the Measurement of Young Forestry Trials" @default.
- W3113199772 cites W1492020934 @default.
- W3113199772 cites W1522525389 @default.
- W3113199772 cites W1968987485 @default.
- W3113199772 cites W1976537707 @default.
- W3113199772 cites W1981527205 @default.
- W3113199772 cites W1983818779 @default.
- W3113199772 cites W1987267031 @default.
- W3113199772 cites W1987794512 @default.
- W3113199772 cites W1995271945 @default.
- W3113199772 cites W1998779060 @default.
- W3113199772 cites W2002008272 @default.
- W3113199772 cites W2002730835 @default.
- W3113199772 cites W2005885990 @default.
- W3113199772 cites W2007180367 @default.
- W3113199772 cites W2019549520 @default.
- W3113199772 cites W2023353527 @default.
- W3113199772 cites W2030814238 @default.
- W3113199772 cites W2031419936 @default.
- W3113199772 cites W2053863302 @default.
- W3113199772 cites W2060297838 @default.
- W3113199772 cites W2070193374 @default.
- W3113199772 cites W2073150296 @default.
- W3113199772 cites W2076700149 @default.
- W3113199772 cites W2084525416 @default.
- W3113199772 cites W2101365296 @default.
- W3113199772 cites W2104582654 @default.
- W3113199772 cites W2116674621 @default.
- W3113199772 cites W2139053550 @default.
- W3113199772 cites W2145024060 @default.
- W3113199772 cites W2145243492 @default.
- W3113199772 cites W2155714399 @default.
- W3113199772 cites W2165044919 @default.
- W3113199772 cites W2166181196 @default.
- W3113199772 cites W2169059815 @default.
- W3113199772 cites W2296685749 @default.
- W3113199772 cites W2365847253 @default.
- W3113199772 cites W2425812835 @default.
- W3113199772 cites W2513337491 @default.
- W3113199772 cites W2515223284 @default.
- W3113199772 cites W2560462200 @default.
- W3113199772 cites W2596862155 @default.
- W3113199772 cites W2606100861 @default.
- W3113199772 cites W2611581340 @default.
- W3113199772 cites W2620645313 @default.
- W3113199772 cites W2726000536 @default.
- W3113199772 cites W2740121437 @default.
- W3113199772 cites W2746458690 @default.
- W3113199772 cites W2747779538 @default.
- W3113199772 cites W2754294648 @default.
- W3113199772 cites W2765920222 @default.
- W3113199772 cites W2777096355 @default.
- W3113199772 cites W2787518617 @default.
- W3113199772 cites W2792846923 @default.
- W3113199772 cites W2793051750 @default.
- W3113199772 cites W2799276523 @default.
- W3113199772 cites W2807222299 @default.
- W3113199772 cites W2807371277 @default.
- W3113199772 cites W2827140183 @default.
- W3113199772 cites W2884875839 @default.
- W3113199772 cites W2886903425 @default.
- W3113199772 cites W2890070422 @default.
- W3113199772 cites W2894977581 @default.
- W3113199772 cites W2897715193 @default.
- W3113199772 cites W2901733174 @default.
- W3113199772 cites W2911460990 @default.
- W3113199772 cites W2912203297 @default.
- W3113199772 cites W2913149473 @default.
- W3113199772 cites W2914433259 @default.
- W3113199772 cites W2922369509 @default.
- W3113199772 cites W2928980835 @default.
- W3113199772 cites W2930717782 @default.
- W3113199772 cites W2938960083 @default.
- W3113199772 cites W2941004385 @default.
- W3113199772 cites W2943149949 @default.
- W3113199772 cites W2946852068 @default.
- W3113199772 cites W2951716332 @default.
- W3113199772 cites W2957974561 @default.
- W3113199772 cites W2966139841 @default.
- W3113199772 cites W2981608986 @default.
- W3113199772 cites W2993891310 @default.
- W3113199772 cites W3006471562 @default.
- W3113199772 cites W3015201166 @default.
- W3113199772 cites W4229607849 @default.
- W3113199772 doi "https://doi.org/10.3390/rs12244039" @default.
- W3113199772 hasPublicationYear "2020" @default.