Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113244057> ?p ?o ?g. }
- W3113244057 endingPage "100687" @default.
- W3113244057 startingPage "100687" @default.
- W3113244057 abstract "Prior research documents that India has the greatest number of girls married as minors of any nation in the world, increasing social and health risks for both these young wives and their children. While the prevalence of child marriage has declined in the nation, more work is needed to accelerate this decline and the negative consequences of the practice. Expanded targets for intervention require greater identification of these targets. Machine learning can offer insight into identification of novel factors associated with child marriage that can serve as targets for intervention.We applied machine learning methods to retrospective cross-sectional survey data from India on demographics and health, the nationally-representative National Family Health Survey, conducted in 2015-16. We analyzed data using a traditional regression model, with child marriage as the dependent variable, and 4000+ variables from the survey as the independent variables. We also used three commonly used machine learning algorithms- Least Absolute Shrinkage and Selection Operator (lasso) or L-1 regularized logistic regression models; L2 regularized logistic regression or ridge models; and neural network models. Finally, we developed and applied a novel and rigorous approach involving expert qualitative review and coding of variables generated from an iterative series of regularized models to assess thematically key variable groupings associated with child marriage.Analyses revealed that regularized logistic and neural network applications demonstrated better accuracy and lower error rates than traditional logistic regression, with a greater number of features and variables generated. Regularized models highlight higher fertility and contraception, longer duration of marriage, geographic, and socioeconomic vulnerabilities as key correlates; findings shown in prior research. However, our novel method involving expert qualitative coding of variables generated from iterative regularized models and resultant thematic generation offered clarity on variables not focused upon in prior research, specifically non-utilization of health system benefits related to nutrition for mothers and infants.Machine learning appears to be a valid means of identifying key correlates of child marriage in India and, via our innovative iterative thematic approach, can be useful to identify novel variables associated with this outcome. Findings related to low nutritional service uptake also demonstrate the need for more focus on public health outreach for nutritional programs tailored to this population." @default.
- W3113244057 created "2020-12-21" @default.
- W3113244057 creator A5019388808 @default.
- W3113244057 creator A5020969827 @default.
- W3113244057 creator A5021827617 @default.
- W3113244057 creator A5030533803 @default.
- W3113244057 creator A5048505595 @default.
- W3113244057 date "2020-12-01" @default.
- W3113244057 modified "2023-09-25" @default.
- W3113244057 title "Application of machine learning to understand child marriage in India" @default.
- W3113244057 cites W1940090105 @default.
- W3113244057 cites W1969698547 @default.
- W3113244057 cites W1972954478 @default.
- W3113244057 cites W1994912402 @default.
- W3113244057 cites W1994961181 @default.
- W3113244057 cites W2007279208 @default.
- W3113244057 cites W2017431890 @default.
- W3113244057 cites W2024392304 @default.
- W3113244057 cites W2061879439 @default.
- W3113244057 cites W2094439147 @default.
- W3113244057 cites W2096819104 @default.
- W3113244057 cites W2119423166 @default.
- W3113244057 cites W2139500414 @default.
- W3113244057 cites W2142652789 @default.
- W3113244057 cites W2157825442 @default.
- W3113244057 cites W2518614099 @default.
- W3113244057 cites W2530120858 @default.
- W3113244057 cites W2583227659 @default.
- W3113244057 cites W2612339932 @default.
- W3113244057 cites W2765944559 @default.
- W3113244057 cites W2768650472 @default.
- W3113244057 cites W2770256320 @default.
- W3113244057 cites W2774043565 @default.
- W3113244057 cites W2781122472 @default.
- W3113244057 cites W2782760820 @default.
- W3113244057 cites W2789722850 @default.
- W3113244057 cites W2794910998 @default.
- W3113244057 cites W2807161634 @default.
- W3113244057 cites W2898543815 @default.
- W3113244057 cites W2919115771 @default.
- W3113244057 cites W2921115033 @default.
- W3113244057 cites W2921207925 @default.
- W3113244057 cites W2923845387 @default.
- W3113244057 cites W2924882305 @default.
- W3113244057 cites W2925095262 @default.
- W3113244057 cites W2943652408 @default.
- W3113244057 cites W2967612475 @default.
- W3113244057 cites W2981304100 @default.
- W3113244057 doi "https://doi.org/10.1016/j.ssmph.2020.100687" @default.
- W3113244057 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7732880" @default.
- W3113244057 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33335970" @default.
- W3113244057 hasPublicationYear "2020" @default.
- W3113244057 type Work @default.
- W3113244057 sameAs 3113244057 @default.
- W3113244057 citedByCount "9" @default.
- W3113244057 countsByYear W31132440572020 @default.
- W3113244057 countsByYear W31132440572021 @default.
- W3113244057 countsByYear W31132440572022 @default.
- W3113244057 countsByYear W31132440572023 @default.
- W3113244057 crossrefType "journal-article" @default.
- W3113244057 hasAuthorship W3113244057A5019388808 @default.
- W3113244057 hasAuthorship W3113244057A5020969827 @default.
- W3113244057 hasAuthorship W3113244057A5021827617 @default.
- W3113244057 hasAuthorship W3113244057A5030533803 @default.
- W3113244057 hasAuthorship W3113244057A5048505595 @default.
- W3113244057 hasBestOaLocation W31132440571 @default.
- W3113244057 hasConcept C105795698 @default.
- W3113244057 hasConcept C117568660 @default.
- W3113244057 hasConcept C119857082 @default.
- W3113244057 hasConcept C136764020 @default.
- W3113244057 hasConcept C147077947 @default.
- W3113244057 hasConcept C151956035 @default.
- W3113244057 hasConcept C152877465 @default.
- W3113244057 hasConcept C154945302 @default.
- W3113244057 hasConcept C189285262 @default.
- W3113244057 hasConcept C2908647359 @default.
- W3113244057 hasConcept C33923547 @default.
- W3113244057 hasConcept C37616216 @default.
- W3113244057 hasConcept C41008148 @default.
- W3113244057 hasConcept C71924100 @default.
- W3113244057 hasConcept C83546350 @default.
- W3113244057 hasConcept C99454951 @default.
- W3113244057 hasConceptScore W3113244057C105795698 @default.
- W3113244057 hasConceptScore W3113244057C117568660 @default.
- W3113244057 hasConceptScore W3113244057C119857082 @default.
- W3113244057 hasConceptScore W3113244057C136764020 @default.
- W3113244057 hasConceptScore W3113244057C147077947 @default.
- W3113244057 hasConceptScore W3113244057C151956035 @default.
- W3113244057 hasConceptScore W3113244057C152877465 @default.
- W3113244057 hasConceptScore W3113244057C154945302 @default.
- W3113244057 hasConceptScore W3113244057C189285262 @default.
- W3113244057 hasConceptScore W3113244057C2908647359 @default.
- W3113244057 hasConceptScore W3113244057C33923547 @default.
- W3113244057 hasConceptScore W3113244057C37616216 @default.
- W3113244057 hasConceptScore W3113244057C41008148 @default.
- W3113244057 hasConceptScore W3113244057C71924100 @default.
- W3113244057 hasConceptScore W3113244057C83546350 @default.
- W3113244057 hasConceptScore W3113244057C99454951 @default.