Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113257436> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3113257436 abstract "Solar Power Tower (SPT) receivers are the most critical component of a SPT power plant, as they receive high incident solar flux on their external face while having a corrosive environment on their internal side. Due to the transient nature of solar energy, a steady-state analysis does not accurately reflect the stresses on the receiver. Current CFD models of the receivers do not simulate the whole receiver, because doing so requires solving models of high computational cost, with meshes of around 8x108 elements. The computational cost of a CFD simulation is directly proportional to the number of elements of the mesh, especially for transient simulations; that is why simplified, but mostly accurate models, are being designed, at least for the initial steps of the receiver design. Some analytical models for external, cavity, and volumetric type receivers subject to transient heat flux have been proposed,. Some authors have used as reference the steady-state external receiver model created by Sanchez-Gonzalez et al. Xu et al. proposed a 3-D model to simulate the dynamic thermal performance of an external molten salt solar receiver, that could show the temperature distribution evolution after the receiver's exposition to a varying solar flux, the HTF (Heat Transfer Fluid) flow rate, the wind speed and the ambient temperature. Too et al. used an optical-thermal model to investigate transient behavior due to short-time DNI fluctuations. Fritsch et al. compared a simple FEM model to a more complex CFD one. Cagnoli et al. implemented a time-dependent, quasi-1-D system-level model. Samanes and Garcia-Barberena elaborated a model with Modelica, with a 1-D fluid flow configuration through the panels. Zhang et al. used dynamic method called Transfer Function Method (TFM), a second- order differential equation that does not require intermediate temperatures values to predict the outlet temperature of the HTF. Yu et al. proposed a model for a cavity receiver designed for direct stream generation. Zhang et al. divided their model of cavity receiver in four sub-models: thermal conduction in the tube; thermal convection from the outer tube surfaces to the air inside the cavity; thermal radiation heat transfer inside the cavity; thermal convection from the inner surface of the tube to the fluid inside the tube. Wu and Wang studied a volumetric solar air receiver where the volumetric element was a ceramic foam, using semi-empirical equations that describe the behavior of a turbulent flow in a porous medium. Reddy and Nataraj used a similar mathematical model, in 2-D and applying Gaussian heat flux. Ahlbrink et al. combined three tools in order to simulate an open volumetric air receiver: STRAL/Modelica/Dymola." @default.
- W3113257436 created "2020-12-21" @default.
- W3113257436 creator A5018903668 @default.
- W3113257436 creator A5061543660 @default.
- W3113257436 creator A5089384338 @default.
- W3113257436 date "2020-01-01" @default.
- W3113257436 modified "2023-09-30" @default.
- W3113257436 title "Models of transient heat transfer for central tower receivers: A review" @default.
- W3113257436 cites W1968525813 @default.
- W3113257436 cites W1969058225 @default.
- W3113257436 cites W1973515954 @default.
- W3113257436 cites W1993776562 @default.
- W3113257436 cites W1997384614 @default.
- W3113257436 cites W1997872949 @default.
- W3113257436 cites W2003851034 @default.
- W3113257436 cites W2005522900 @default.
- W3113257436 cites W2011351455 @default.
- W3113257436 cites W2012862464 @default.
- W3113257436 cites W2017218573 @default.
- W3113257436 cites W2021728333 @default.
- W3113257436 cites W2025617210 @default.
- W3113257436 cites W2030348812 @default.
- W3113257436 cites W2044370498 @default.
- W3113257436 cites W2078341848 @default.
- W3113257436 cites W2078935815 @default.
- W3113257436 cites W2120426740 @default.
- W3113257436 cites W2134720853 @default.
- W3113257436 cites W2190595229 @default.
- W3113257436 cites W2310628121 @default.
- W3113257436 cites W2346538643 @default.
- W3113257436 cites W2724682834 @default.
- W3113257436 cites W2780201360 @default.
- W3113257436 cites W2805192178 @default.
- W3113257436 cites W2887631191 @default.
- W3113257436 cites W2889194613 @default.
- W3113257436 cites W2903138997 @default.
- W3113257436 cites W3172607594 @default.
- W3113257436 doi "https://doi.org/10.1063/5.0034529" @default.
- W3113257436 hasPublicationYear "2020" @default.
- W3113257436 type Work @default.
- W3113257436 sameAs 3113257436 @default.
- W3113257436 citedByCount "1" @default.
- W3113257436 countsByYear W31132574362022 @default.
- W3113257436 crossrefType "proceedings-article" @default.
- W3113257436 hasAuthorship W3113257436A5018903668 @default.
- W3113257436 hasAuthorship W3113257436A5061543660 @default.
- W3113257436 hasAuthorship W3113257436A5089384338 @default.
- W3113257436 hasBestOaLocation W31132574361 @default.
- W3113257436 hasConcept C111919701 @default.
- W3113257436 hasConcept C119599485 @default.
- W3113257436 hasConcept C121332964 @default.
- W3113257436 hasConcept C127413603 @default.
- W3113257436 hasConcept C173608175 @default.
- W3113257436 hasConcept C2776175482 @default.
- W3113257436 hasConcept C2777831296 @default.
- W3113257436 hasConcept C2780799671 @default.
- W3113257436 hasConcept C2989121073 @default.
- W3113257436 hasConcept C41008148 @default.
- W3113257436 hasConcept C50517652 @default.
- W3113257436 hasConcept C57879066 @default.
- W3113257436 hasConcept C66938386 @default.
- W3113257436 hasConcept C85761212 @default.
- W3113257436 hasConceptScore W3113257436C111919701 @default.
- W3113257436 hasConceptScore W3113257436C119599485 @default.
- W3113257436 hasConceptScore W3113257436C121332964 @default.
- W3113257436 hasConceptScore W3113257436C127413603 @default.
- W3113257436 hasConceptScore W3113257436C173608175 @default.
- W3113257436 hasConceptScore W3113257436C2776175482 @default.
- W3113257436 hasConceptScore W3113257436C2777831296 @default.
- W3113257436 hasConceptScore W3113257436C2780799671 @default.
- W3113257436 hasConceptScore W3113257436C2989121073 @default.
- W3113257436 hasConceptScore W3113257436C41008148 @default.
- W3113257436 hasConceptScore W3113257436C50517652 @default.
- W3113257436 hasConceptScore W3113257436C57879066 @default.
- W3113257436 hasConceptScore W3113257436C66938386 @default.
- W3113257436 hasConceptScore W3113257436C85761212 @default.
- W3113257436 hasLocation W31132574361 @default.
- W3113257436 hasOpenAccess W3113257436 @default.
- W3113257436 hasPrimaryLocation W31132574361 @default.
- W3113257436 hasRelatedWork W1520114617 @default.
- W3113257436 hasRelatedWork W1997374039 @default.
- W3113257436 hasRelatedWork W2014796125 @default.
- W3113257436 hasRelatedWork W2056500914 @default.
- W3113257436 hasRelatedWork W2096208245 @default.
- W3113257436 hasRelatedWork W2171695122 @default.
- W3113257436 hasRelatedWork W2316958959 @default.
- W3113257436 hasRelatedWork W2410728133 @default.
- W3113257436 hasRelatedWork W3119128624 @default.
- W3113257436 hasRelatedWork W2581850138 @default.
- W3113257436 isParatext "false" @default.
- W3113257436 isRetracted "false" @default.
- W3113257436 magId "3113257436" @default.
- W3113257436 workType "article" @default.