Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113268514> ?p ?o ?g. }
- W3113268514 endingPage "030501" @default.
- W3113268514 startingPage "030501" @default.
- W3113268514 abstract "With the development of online social networks, they rapidly become an ideal platform for information about social information diffusion, commodity marketing, shopping recommendation, opinion expression and social consensus. The social network information propagation has become a research hotspot correspondingly. Meanwhile, information diffusion contains complex dynamic genesis in online social networks. In view of the diversity of information transmission, the efficiency of propagation and the convenience of interaction, it is very important to regulate the accuracy, strengthen the public opinion monitoring and formulating the information control strategy. The purpose of this study is to quantify the intensity of the influence, especially provides a theoretical basis for studying the state transition of different user groups in the evolution process. As existing epidemic model paid less attention to influence factors and previous research about influence calculation mainly focused on static network topology but ignored individual behavior characteristics, we propose an information diffusion dynamics model based on dynamic user behaviors and influence. Firstly, according to the multiple linear regression model, we put forward a method to analyze internal and external factors for influence formation from two aspects:personal memory and user interaction. Secondly, for a similar propagation mechanism of information diffusion and epidemics spreading, in this paper we present an improved SIR model based on mean-field theory by introducing influence factor. The contribution of this paper can be summarized as follows. 1) For the influence quantification, different from the current research work that mainly focuses on network structure, we integrate the internal factors and external factors, and propose a user influence evaluation method based on the multiple linear regression model. The individual memory principle is analyzed by combining user attributes and individual behavior. User interaction is also studied by using the shortest path method in graph theory. 2) On modeling the information diffusion, by referring SIR model, we introduce the user influence factor as the parameter of the state change into the epidemic model. The mean-field theory is used to establish the differential equations. Subsequently, the novel information diffusion dynamics model and verification method are proposed. The method avoids the randomness of the artificial setting parameters within the model, and reveals the nature of multi-factors coupling in the information transmission. Experimental results show that the optimized model can comprehend the principle and information diffusion mechanism of social influence from a more macroscopic level. The study can not only explain the internal and external dynamics genesis of information diffusion, but also explore the behavioral characteristics and behavior laws of human. In addition, we try to provide theoretical basis for situation awareness and control strategy of social information diffusion." @default.
- W3113268514 created "2020-12-21" @default.
- W3113268514 creator A5007354283 @default.
- W3113268514 creator A5037159025 @default.
- W3113268514 creator A5047967243 @default.
- W3113268514 date "2017-01-01" @default.
- W3113268514 modified "2023-09-26" @default.
- W3113268514 title "An information diffusion dynamic model based on social influence and mean-field theory" @default.
- W3113268514 cites W1531370611 @default.
- W3113268514 cites W1562484720 @default.
- W3113268514 cites W1878853999 @default.
- W3113268514 cites W1971687195 @default.
- W3113268514 cites W1974664225 @default.
- W3113268514 cites W1978567637 @default.
- W3113268514 cites W1987662905 @default.
- W3113268514 cites W2002368644 @default.
- W3113268514 cites W2007346367 @default.
- W3113268514 cites W2019542451 @default.
- W3113268514 cites W2020880854 @default.
- W3113268514 cites W2025050756 @default.
- W3113268514 cites W2047706524 @default.
- W3113268514 cites W2058719535 @default.
- W3113268514 cites W2059722914 @default.
- W3113268514 cites W2101580881 @default.
- W3113268514 cites W2121821841 @default.
- W3113268514 cites W2128893310 @default.
- W3113268514 cites W2133131640 @default.
- W3113268514 cites W2258076267 @default.
- W3113268514 cites W2382315869 @default.
- W3113268514 cites W2522579042 @default.
- W3113268514 cites W3010201889 @default.
- W3113268514 cites W3103657871 @default.
- W3113268514 cites W3117541776 @default.
- W3113268514 cites W4242087913 @default.
- W3113268514 cites W764995726 @default.
- W3113268514 cites W808055529 @default.
- W3113268514 doi "https://doi.org/10.7498/aps.66.030501" @default.
- W3113268514 hasPublicationYear "2017" @default.
- W3113268514 type Work @default.
- W3113268514 sameAs 3113268514 @default.
- W3113268514 citedByCount "7" @default.
- W3113268514 countsByYear W31132685142017 @default.
- W3113268514 countsByYear W31132685142019 @default.
- W3113268514 countsByYear W31132685142020 @default.
- W3113268514 countsByYear W31132685142021 @default.
- W3113268514 countsByYear W31132685142022 @default.
- W3113268514 crossrefType "journal-article" @default.
- W3113268514 hasAuthorship W3113268514A5007354283 @default.
- W3113268514 hasAuthorship W3113268514A5037159025 @default.
- W3113268514 hasAuthorship W3113268514A5047967243 @default.
- W3113268514 hasBestOaLocation W31132685141 @default.
- W3113268514 hasConcept C121332964 @default.
- W3113268514 hasConcept C124101348 @default.
- W3113268514 hasConcept C131158328 @default.
- W3113268514 hasConcept C13540734 @default.
- W3113268514 hasConcept C136764020 @default.
- W3113268514 hasConcept C15744967 @default.
- W3113268514 hasConcept C187008535 @default.
- W3113268514 hasConcept C202444582 @default.
- W3113268514 hasConcept C31258907 @default.
- W3113268514 hasConcept C33923547 @default.
- W3113268514 hasConcept C41008148 @default.
- W3113268514 hasConcept C4727928 @default.
- W3113268514 hasConcept C518677369 @default.
- W3113268514 hasConcept C69357855 @default.
- W3113268514 hasConcept C77805123 @default.
- W3113268514 hasConcept C9652623 @default.
- W3113268514 hasConcept C97355855 @default.
- W3113268514 hasConceptScore W3113268514C121332964 @default.
- W3113268514 hasConceptScore W3113268514C124101348 @default.
- W3113268514 hasConceptScore W3113268514C131158328 @default.
- W3113268514 hasConceptScore W3113268514C13540734 @default.
- W3113268514 hasConceptScore W3113268514C136764020 @default.
- W3113268514 hasConceptScore W3113268514C15744967 @default.
- W3113268514 hasConceptScore W3113268514C187008535 @default.
- W3113268514 hasConceptScore W3113268514C202444582 @default.
- W3113268514 hasConceptScore W3113268514C31258907 @default.
- W3113268514 hasConceptScore W3113268514C33923547 @default.
- W3113268514 hasConceptScore W3113268514C41008148 @default.
- W3113268514 hasConceptScore W3113268514C4727928 @default.
- W3113268514 hasConceptScore W3113268514C518677369 @default.
- W3113268514 hasConceptScore W3113268514C69357855 @default.
- W3113268514 hasConceptScore W3113268514C77805123 @default.
- W3113268514 hasConceptScore W3113268514C9652623 @default.
- W3113268514 hasConceptScore W3113268514C97355855 @default.
- W3113268514 hasIssue "3" @default.
- W3113268514 hasLocation W31132685141 @default.
- W3113268514 hasOpenAccess W3113268514 @default.
- W3113268514 hasPrimaryLocation W31132685141 @default.
- W3113268514 hasRelatedWork W121681035 @default.
- W3113268514 hasRelatedWork W2014074345 @default.
- W3113268514 hasRelatedWork W2058475418 @default.
- W3113268514 hasRelatedWork W2078656448 @default.
- W3113268514 hasRelatedWork W2113259753 @default.
- W3113268514 hasRelatedWork W2401798371 @default.
- W3113268514 hasRelatedWork W2806516768 @default.
- W3113268514 hasRelatedWork W3113268514 @default.
- W3113268514 hasRelatedWork W4224287209 @default.