Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113268596> ?p ?o ?g. }
- W3113268596 endingPage "103749" @default.
- W3113268596 startingPage "103749" @default.
- W3113268596 abstract "Sensitivity to derivatives and a need for proper initial guesses are the main disadvantages of classic nonlinear solvers like Newton's method. To overcome the obstacles, a numerical solver for second-order nonlinear Partial Differential Equations (PDEs) based on an Adaptive Neural Network (AdNN) is introduced. While using Newton's method needs to form the Jacobian matrix and its inversion, which both of them are time-consuming and dependent on the nature of the problem, the proposed solver tries to find the roots of the algebraic equations by changing the weights of AdNN by the help adaptive laws. The proposed approach has been applied to solve the governing PDEs of the gas flow in shale resources and the immiscible two-phase flow of water and oil in hydrocarbon reservoirs as two highly nonlinear phenomena. The generated profiles of pressures and saturations show a satisfying match with the outputs of Newton's method. However, using the presented algorithm not only removes the former necessities but also helps the community to solve the relevant PDEs governing the critical elements of the energy market in the future with a higher level of confidence." @default.
- W3113268596 created "2020-12-21" @default.
- W3113268596 creator A5018473994 @default.
- W3113268596 creator A5037891768 @default.
- W3113268596 creator A5043303791 @default.
- W3113268596 creator A5069336112 @default.
- W3113268596 date "2021-03-01" @default.
- W3113268596 modified "2023-10-17" @default.
- W3113268596 title "A nonlinear solver based on an adaptive neural network, introduction and application to porous media flow" @default.
- W3113268596 cites W1634261337 @default.
- W3113268596 cites W1973470252 @default.
- W3113268596 cites W1976553449 @default.
- W3113268596 cites W1977822596 @default.
- W3113268596 cites W1993288443 @default.
- W3113268596 cites W1997072582 @default.
- W3113268596 cites W2000803546 @default.
- W3113268596 cites W2006610075 @default.
- W3113268596 cites W2020561998 @default.
- W3113268596 cites W2025357746 @default.
- W3113268596 cites W2034903716 @default.
- W3113268596 cites W2047137338 @default.
- W3113268596 cites W2048763981 @default.
- W3113268596 cites W2049255102 @default.
- W3113268596 cites W2059927105 @default.
- W3113268596 cites W2060324796 @default.
- W3113268596 cites W2062228129 @default.
- W3113268596 cites W2071079582 @default.
- W3113268596 cites W2076697695 @default.
- W3113268596 cites W2093445429 @default.
- W3113268596 cites W2093778188 @default.
- W3113268596 cites W2127579732 @default.
- W3113268596 cites W2155029100 @default.
- W3113268596 cites W2227186012 @default.
- W3113268596 cites W2319994998 @default.
- W3113268596 cites W2412922533 @default.
- W3113268596 cites W2507799262 @default.
- W3113268596 cites W2520751857 @default.
- W3113268596 cites W2780913857 @default.
- W3113268596 cites W2781930759 @default.
- W3113268596 cites W2792010220 @default.
- W3113268596 cites W2802802203 @default.
- W3113268596 cites W2803281079 @default.
- W3113268596 cites W2887822823 @default.
- W3113268596 cites W2888427874 @default.
- W3113268596 cites W2891075305 @default.
- W3113268596 cites W2895204930 @default.
- W3113268596 cites W2900487231 @default.
- W3113268596 cites W2938154466 @default.
- W3113268596 cites W2968687662 @default.
- W3113268596 cites W2978033203 @default.
- W3113268596 cites W2979429385 @default.
- W3113268596 cites W2981147321 @default.
- W3113268596 cites W2999842697 @default.
- W3113268596 cites W3010208358 @default.
- W3113268596 cites W3102445432 @default.
- W3113268596 cites W4231268605 @default.
- W3113268596 doi "https://doi.org/10.1016/j.jngse.2020.103749" @default.
- W3113268596 hasPublicationYear "2021" @default.
- W3113268596 type Work @default.
- W3113268596 sameAs 3113268596 @default.
- W3113268596 citedByCount "10" @default.
- W3113268596 countsByYear W31132685962021 @default.
- W3113268596 countsByYear W31132685962022 @default.
- W3113268596 countsByYear W31132685962023 @default.
- W3113268596 crossrefType "journal-article" @default.
- W3113268596 hasAuthorship W3113268596A5018473994 @default.
- W3113268596 hasAuthorship W3113268596A5037891768 @default.
- W3113268596 hasAuthorship W3113268596A5043303791 @default.
- W3113268596 hasAuthorship W3113268596A5069336112 @default.
- W3113268596 hasConcept C105569014 @default.
- W3113268596 hasConcept C11413529 @default.
- W3113268596 hasConcept C121332964 @default.
- W3113268596 hasConcept C126255220 @default.
- W3113268596 hasConcept C127413603 @default.
- W3113268596 hasConcept C133512626 @default.
- W3113268596 hasConcept C134306372 @default.
- W3113268596 hasConcept C154945302 @default.
- W3113268596 hasConcept C158622935 @default.
- W3113268596 hasConcept C187320778 @default.
- W3113268596 hasConcept C200331156 @default.
- W3113268596 hasConcept C2524010 @default.
- W3113268596 hasConcept C2778770139 @default.
- W3113268596 hasConcept C28826006 @default.
- W3113268596 hasConcept C33923547 @default.
- W3113268596 hasConcept C38349280 @default.
- W3113268596 hasConcept C41008148 @default.
- W3113268596 hasConcept C45374587 @default.
- W3113268596 hasConcept C50644808 @default.
- W3113268596 hasConcept C62520636 @default.
- W3113268596 hasConcept C6648577 @default.
- W3113268596 hasConcept C93779851 @default.
- W3113268596 hasConceptScore W3113268596C105569014 @default.
- W3113268596 hasConceptScore W3113268596C11413529 @default.
- W3113268596 hasConceptScore W3113268596C121332964 @default.
- W3113268596 hasConceptScore W3113268596C126255220 @default.
- W3113268596 hasConceptScore W3113268596C127413603 @default.
- W3113268596 hasConceptScore W3113268596C133512626 @default.
- W3113268596 hasConceptScore W3113268596C134306372 @default.