Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113283970> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3113283970 endingPage "879" @default.
- W3113283970 startingPage "865" @default.
- W3113283970 abstract "Mosquitoes are responsible for the most number of deaths every year throughout the world. Bangladesh is also a big sufferer of this problem. Dengue, malaria, chikungunya, zika, yellow fever etc. are caused by dangerous mosquito bites. The main three types of mosquitoes which are found in Bangladesh are aedes, anopheles and culex. Their identification is crucial to take the necessary steps to kill them in an area. Hence, a convolutional neural network (CNN) model is developed so that the mosquitoes could be classified from their images. We prepared a local dataset consisting of 442 images, collected from various sources. An accuracy of 70% has been achieved by running the proposed CNN model on the collected dataset. However, after augmentation of this dataset which becomes 3,600 images, the accuracy increases to 93%. We also showed the comparison of some methods with the CNN method which are VGG-16, Random Forest, XGboost and SVM. Our proposed CNN method outperforms these methods in terms of the classification accuracy of the mosquitoes. Thus, this research forms an example of humanitarian technology, where data science can be used to support mosquito classification, enabling the treatment of various mosquito borne diseases." @default.
- W3113283970 created "2020-12-21" @default.
- W3113283970 creator A5054555757 @default.
- W3113283970 creator A5078797232 @default.
- W3113283970 creator A5081206139 @default.
- W3113283970 creator A5086955492 @default.
- W3113283970 date "2021-01-01" @default.
- W3113283970 modified "2023-09-29" @default.
- W3113283970 title "Mosquito Classification Using Convolutional Neural Network with Data Augmentation" @default.
- W3113283970 cites W1521415669 @default.
- W3113283970 cites W2015159529 @default.
- W3113283970 cites W2128631208 @default.
- W3113283970 cites W2146292423 @default.
- W3113283970 cites W2330175802 @default.
- W3113283970 cites W2569177493 @default.
- W3113283970 cites W2735851355 @default.
- W3113283970 cites W2819549705 @default.
- W3113283970 cites W2893071678 @default.
- W3113283970 cites W2895785648 @default.
- W3113283970 cites W2898849785 @default.
- W3113283970 cites W2902128131 @default.
- W3113283970 cites W2906988114 @default.
- W3113283970 cites W2910634864 @default.
- W3113283970 cites W2953058079 @default.
- W3113283970 cites W2969682897 @default.
- W3113283970 cites W2973514825 @default.
- W3113283970 cites W2979356785 @default.
- W3113283970 cites W2979753100 @default.
- W3113283970 cites W2979811101 @default.
- W3113283970 cites W2980289721 @default.
- W3113283970 cites W2981752013 @default.
- W3113283970 cites W3010933615 @default.
- W3113283970 cites W3014593042 @default.
- W3113283970 doi "https://doi.org/10.1007/978-3-030-68154-8_74" @default.
- W3113283970 hasPublicationYear "2021" @default.
- W3113283970 type Work @default.
- W3113283970 sameAs 3113283970 @default.
- W3113283970 citedByCount "11" @default.
- W3113283970 countsByYear W31132839702022 @default.
- W3113283970 countsByYear W31132839702023 @default.
- W3113283970 crossrefType "book-chapter" @default.
- W3113283970 hasAuthorship W3113283970A5054555757 @default.
- W3113283970 hasAuthorship W3113283970A5078797232 @default.
- W3113283970 hasAuthorship W3113283970A5081206139 @default.
- W3113283970 hasAuthorship W3113283970A5086955492 @default.
- W3113283970 hasBestOaLocation W31132839702 @default.
- W3113283970 hasConcept C119857082 @default.
- W3113283970 hasConcept C12267149 @default.
- W3113283970 hasConcept C153180895 @default.
- W3113283970 hasConcept C154945302 @default.
- W3113283970 hasConcept C159047783 @default.
- W3113283970 hasConcept C203014093 @default.
- W3113283970 hasConcept C2522874641 @default.
- W3113283970 hasConcept C2778048844 @default.
- W3113283970 hasConcept C2779131611 @default.
- W3113283970 hasConcept C2781273456 @default.
- W3113283970 hasConcept C41008148 @default.
- W3113283970 hasConcept C533803919 @default.
- W3113283970 hasConcept C81363708 @default.
- W3113283970 hasConcept C86803240 @default.
- W3113283970 hasConceptScore W3113283970C119857082 @default.
- W3113283970 hasConceptScore W3113283970C12267149 @default.
- W3113283970 hasConceptScore W3113283970C153180895 @default.
- W3113283970 hasConceptScore W3113283970C154945302 @default.
- W3113283970 hasConceptScore W3113283970C159047783 @default.
- W3113283970 hasConceptScore W3113283970C203014093 @default.
- W3113283970 hasConceptScore W3113283970C2522874641 @default.
- W3113283970 hasConceptScore W3113283970C2778048844 @default.
- W3113283970 hasConceptScore W3113283970C2779131611 @default.
- W3113283970 hasConceptScore W3113283970C2781273456 @default.
- W3113283970 hasConceptScore W3113283970C41008148 @default.
- W3113283970 hasConceptScore W3113283970C533803919 @default.
- W3113283970 hasConceptScore W3113283970C81363708 @default.
- W3113283970 hasConceptScore W3113283970C86803240 @default.
- W3113283970 hasLocation W31132839701 @default.
- W3113283970 hasLocation W31132839702 @default.
- W3113283970 hasOpenAccess W3113283970 @default.
- W3113283970 hasPrimaryLocation W31132839701 @default.
- W3113283970 hasRelatedWork W1980779330 @default.
- W3113283970 hasRelatedWork W2478129234 @default.
- W3113283970 hasRelatedWork W2770739716 @default.
- W3113283970 hasRelatedWork W2978524185 @default.
- W3113283970 hasRelatedWork W2996933976 @default.
- W3113283970 hasRelatedWork W3198433364 @default.
- W3113283970 hasRelatedWork W3208266890 @default.
- W3113283970 hasRelatedWork W2206887761 @default.
- W3113283970 hasRelatedWork W2345184372 @default.
- W3113283970 hasRelatedWork W65757469 @default.
- W3113283970 isParatext "false" @default.
- W3113283970 isRetracted "false" @default.
- W3113283970 magId "3113283970" @default.
- W3113283970 workType "book-chapter" @default.