Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113291505> ?p ?o ?g. }
- W3113291505 abstract "Abstract Background The prediction of biogeographical patterns from a large number of driving factors with complex interactions, correlations and non-linear dependences require advanced analytical methods and modeling tools. This study compares different statistical and machine learning-based models for predicting fungal productivity biogeographical patterns as a case study for the thorough assessment of the performance of alternative modeling approaches to provide accurate and ecologically-consistent predictions. Methods We evaluated and compared the performance of two statistical modeling techniques, namely, generalized linear mixed models and geographically weighted regression, and four techniques based on different machine learning algorithms, namely, random forest, extreme gradient boosting, support vector machine and artificial neural network to predict fungal productivity. Model evaluation was conducted using a systematic methodology combining random, spatial and environmental blocking together with the assessment of the ecological consistency of spatially-explicit model predictions according to scientific knowledge. Results Fungal productivity predictions were sensitive to the modeling approach and the number of predictors used. Moreover, the importance assigned to different predictors varied between machine learning modeling approaches. Decision tree-based models increased prediction accuracy by more than 10% compared to other machine learning approaches, and by more than 20% compared to statistical models, and resulted in higher ecological consistence of the predicted biogeographical patterns of fungal productivity. Conclusions Decision tree-based models were the best approach for prediction both in sampling-like environments as well as in extrapolation beyond the spatial and climatic range of the modeling data. In this study, we show that proper variable selection is crucial to create robust models for extrapolation in biophysically differentiated areas. This allows for reducing the dimensions of the ecosystem space described by the predictors of the models, resulting in higher similarity between the modeling data and the environmental conditions over the whole study area. When dealing with spatial-temporal data in the analysis of biogeographical patterns, environmental blocking is postulated as a highly informative technique to be used in cross-validation to assess the prediction error over larger scales." @default.
- W3113291505 created "2020-12-21" @default.
- W3113291505 creator A5008968993 @default.
- W3113291505 creator A5016120989 @default.
- W3113291505 creator A5050080938 @default.
- W3113291505 creator A5075715987 @default.
- W3113291505 creator A5078100957 @default.
- W3113291505 date "2021-03-15" @default.
- W3113291505 modified "2023-10-06" @default.
- W3113291505 title "Performance of statistical and machine learning-based methods for predicting biogeographical patterns of fungal productivity in forest ecosystems" @default.
- W3113291505 cites W1912209164 @default.
- W3113291505 cites W1951724000 @default.
- W3113291505 cites W1973903640 @default.
- W3113291505 cites W1976058251 @default.
- W3113291505 cites W1992941777 @default.
- W3113291505 cites W1995635281 @default.
- W3113291505 cites W1996031526 @default.
- W3113291505 cites W1997924019 @default.
- W3113291505 cites W1998048588 @default.
- W3113291505 cites W2001341908 @default.
- W3113291505 cites W2010951708 @default.
- W3113291505 cites W2016613976 @default.
- W3113291505 cites W2020691931 @default.
- W3113291505 cites W2025205263 @default.
- W3113291505 cites W2028184537 @default.
- W3113291505 cites W2033481223 @default.
- W3113291505 cites W2035549409 @default.
- W3113291505 cites W2036682095 @default.
- W3113291505 cites W2038619856 @default.
- W3113291505 cites W2043185652 @default.
- W3113291505 cites W2057779644 @default.
- W3113291505 cites W2063198709 @default.
- W3113291505 cites W2066051823 @default.
- W3113291505 cites W2083360316 @default.
- W3113291505 cites W2095894550 @default.
- W3113291505 cites W2098057602 @default.
- W3113291505 cites W2098823605 @default.
- W3113291505 cites W2103549341 @default.
- W3113291505 cites W2111510028 @default.
- W3113291505 cites W2130956715 @default.
- W3113291505 cites W2135954062 @default.
- W3113291505 cites W2139086914 @default.
- W3113291505 cites W2145126338 @default.
- W3113291505 cites W2156319159 @default.
- W3113291505 cites W2156332695 @default.
- W3113291505 cites W2161548576 @default.
- W3113291505 cites W2168694365 @default.
- W3113291505 cites W2305395239 @default.
- W3113291505 cites W234454337 @default.
- W3113291505 cites W2465513537 @default.
- W3113291505 cites W2519343095 @default.
- W3113291505 cites W2519505014 @default.
- W3113291505 cites W2560136348 @default.
- W3113291505 cites W2574179923 @default.
- W3113291505 cites W2580476025 @default.
- W3113291505 cites W2604252602 @default.
- W3113291505 cites W2724305636 @default.
- W3113291505 cites W2729033468 @default.
- W3113291505 cites W2765434127 @default.
- W3113291505 cites W2767546370 @default.
- W3113291505 cites W2773188111 @default.
- W3113291505 cites W2794916302 @default.
- W3113291505 cites W2802677496 @default.
- W3113291505 cites W2887294330 @default.
- W3113291505 cites W2900221110 @default.
- W3113291505 cites W2902748977 @default.
- W3113291505 cites W2904352268 @default.
- W3113291505 cites W2952516441 @default.
- W3113291505 cites W2954065058 @default.
- W3113291505 cites W2954932437 @default.
- W3113291505 cites W2955316307 @default.
- W3113291505 cites W2972629016 @default.
- W3113291505 cites W2995268132 @default.
- W3113291505 cites W2996717911 @default.
- W3113291505 cites W2996760360 @default.
- W3113291505 cites W3006196814 @default.
- W3113291505 cites W3028947776 @default.
- W3113291505 cites W3102027041 @default.
- W3113291505 cites W3121452939 @default.
- W3113291505 cites W429766147 @default.
- W3113291505 cites W4299625508 @default.
- W3113291505 cites W60686164 @default.
- W3113291505 cites W793093014 @default.
- W3113291505 cites W901507695 @default.
- W3113291505 doi "https://doi.org/10.1186/s40663-021-00297-w" @default.
- W3113291505 hasPublicationYear "2021" @default.
- W3113291505 type Work @default.
- W3113291505 sameAs 3113291505 @default.
- W3113291505 citedByCount "9" @default.
- W3113291505 countsByYear W31132915052021 @default.
- W3113291505 countsByYear W31132915052022 @default.
- W3113291505 countsByYear W31132915052023 @default.
- W3113291505 crossrefType "journal-article" @default.
- W3113291505 hasAuthorship W3113291505A5008968993 @default.
- W3113291505 hasAuthorship W3113291505A5016120989 @default.
- W3113291505 hasAuthorship W3113291505A5050080938 @default.
- W3113291505 hasAuthorship W3113291505A5075715987 @default.
- W3113291505 hasAuthorship W3113291505A5078100957 @default.
- W3113291505 hasBestOaLocation W31132915051 @default.
- W3113291505 hasConcept C105795698 @default.