Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113295025> ?p ?o ?g. }
- W3113295025 endingPage "251" @default.
- W3113295025 startingPage "237" @default.
- W3113295025 abstract "With the increasing complexity of industrial equipment, it is urgent to provide timely diagnosis and accurate evaluation to avoid failure. For rolling bearings, it is important to achieve the multi-stage (incipient, intermediate, late) fault diagnosis under random noise. Different from traditional methods, an Output Hidden Feedback Elman Adaptive Boosting-Bootstrap Aggregating algorithm is proposed under a comprehensive diagnosis framework. First, the original signal is decomposed, denoised and reconstructed by Ensemble Empirical Mode Decomposition. Then, OHF Elman neural network is designed by increasing a feedback from the output layer to the hidden layer based on Elman neural network. This improves the memory function for dynamic data of rolling bearings. Furthermore, for achieving diagnostic accuracy and algorithm stability, OHF Elman AdaBoost-Bagging algorithm is developed as a strong learner through the dual integration of AdaBoost algorithm and Bagging algorithm. Experimental results show that the proposed algorithm not only has a good diagnostic performance on different stages of rolling bearing faults, but also achieves higher generalization ability and stability. This multi-stage fault diagnosis framework provides a novel tool and an effective solution for rolling bearing fault diagnosis." @default.
- W3113295025 created "2020-12-21" @default.
- W3113295025 creator A5046454314 @default.
- W3113295025 creator A5054008223 @default.
- W3113295025 creator A5056432606 @default.
- W3113295025 creator A5060969271 @default.
- W3113295025 creator A5073881354 @default.
- W3113295025 creator A5089752680 @default.
- W3113295025 date "2021-04-01" @default.
- W3113295025 modified "2023-10-16" @default.
- W3113295025 title "Multi-stage fault diagnosis framework for rolling bearing based on OHF Elman AdaBoost-Bagging algorithm" @default.
- W3113295025 cites W1973817400 @default.
- W3113295025 cites W1988790447 @default.
- W3113295025 cites W1989197083 @default.
- W3113295025 cites W2007221293 @default.
- W3113295025 cites W2010131194 @default.
- W3113295025 cites W2014484342 @default.
- W3113295025 cites W2067514909 @default.
- W3113295025 cites W2076601007 @default.
- W3113295025 cites W2120390927 @default.
- W3113295025 cites W2121043290 @default.
- W3113295025 cites W2195063230 @default.
- W3113295025 cites W243674440 @default.
- W3113295025 cites W2564216145 @default.
- W3113295025 cites W2565175628 @default.
- W3113295025 cites W2567086669 @default.
- W3113295025 cites W2594467130 @default.
- W3113295025 cites W2625352931 @default.
- W3113295025 cites W2746793527 @default.
- W3113295025 cites W2791139105 @default.
- W3113295025 cites W2799800773 @default.
- W3113295025 cites W2803884688 @default.
- W3113295025 cites W2804073332 @default.
- W3113295025 cites W2808573547 @default.
- W3113295025 cites W2809350318 @default.
- W3113295025 cites W2810304291 @default.
- W3113295025 cites W2885446150 @default.
- W3113295025 cites W2886755908 @default.
- W3113295025 cites W2887315962 @default.
- W3113295025 cites W2893747136 @default.
- W3113295025 cites W2903052680 @default.
- W3113295025 cites W2916629768 @default.
- W3113295025 cites W2925043975 @default.
- W3113295025 cites W2940633228 @default.
- W3113295025 cites W2942762955 @default.
- W3113295025 cites W2943844315 @default.
- W3113295025 cites W2944451552 @default.
- W3113295025 cites W2944919952 @default.
- W3113295025 cites W2947583263 @default.
- W3113295025 cites W2962701604 @default.
- W3113295025 cites W2963647449 @default.
- W3113295025 cites W2973039131 @default.
- W3113295025 cites W2979950223 @default.
- W3113295025 cites W2989494743 @default.
- W3113295025 cites W2996089053 @default.
- W3113295025 cites W2998227980 @default.
- W3113295025 cites W4212883601 @default.
- W3113295025 doi "https://doi.org/10.1016/j.neucom.2020.10.003" @default.
- W3113295025 hasPublicationYear "2021" @default.
- W3113295025 type Work @default.
- W3113295025 sameAs 3113295025 @default.
- W3113295025 citedByCount "29" @default.
- W3113295025 countsByYear W31132950252021 @default.
- W3113295025 countsByYear W31132950252022 @default.
- W3113295025 countsByYear W31132950252023 @default.
- W3113295025 crossrefType "journal-article" @default.
- W3113295025 hasAuthorship W3113295025A5046454314 @default.
- W3113295025 hasAuthorship W3113295025A5054008223 @default.
- W3113295025 hasAuthorship W3113295025A5056432606 @default.
- W3113295025 hasAuthorship W3113295025A5060969271 @default.
- W3113295025 hasAuthorship W3113295025A5073881354 @default.
- W3113295025 hasAuthorship W3113295025A5089752680 @default.
- W3113295025 hasConcept C112633086 @default.
- W3113295025 hasConcept C112972136 @default.
- W3113295025 hasConcept C11413529 @default.
- W3113295025 hasConcept C119857082 @default.
- W3113295025 hasConcept C121332964 @default.
- W3113295025 hasConcept C12267149 @default.
- W3113295025 hasConcept C127313418 @default.
- W3113295025 hasConcept C134306372 @default.
- W3113295025 hasConcept C141404830 @default.
- W3113295025 hasConcept C153180895 @default.
- W3113295025 hasConcept C154945302 @default.
- W3113295025 hasConcept C165205528 @default.
- W3113295025 hasConcept C175551986 @default.
- W3113295025 hasConcept C177148314 @default.
- W3113295025 hasConcept C198394728 @default.
- W3113295025 hasConcept C25570617 @default.
- W3113295025 hasConcept C2780155820 @default.
- W3113295025 hasConcept C33923547 @default.
- W3113295025 hasConcept C41008148 @default.
- W3113295025 hasConcept C46686674 @default.
- W3113295025 hasConcept C50644808 @default.
- W3113295025 hasConcept C62520636 @default.
- W3113295025 hasConcept C76155785 @default.
- W3113295025 hasConceptScore W3113295025C112633086 @default.
- W3113295025 hasConceptScore W3113295025C112972136 @default.
- W3113295025 hasConceptScore W3113295025C11413529 @default.