Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113305891> ?p ?o ?g. }
- W3113305891 endingPage "112236" @default.
- W3113305891 startingPage "112236" @default.
- W3113305891 abstract "Abstract We introduce a new platform, Ocean Color - Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART), for analysis of data obtained by satellite ocean color sensors. OC-SMART is a multi-sensor data analysis platform which supports heritage, current, and possible future multi-spectral and hyper-spectral sensors from US, EU, Korea, Japan, and China, including SeaWiFS, Aqua/MODIS, SNPP/VIIRS, ISS/HICO, Landsat8/OLI, DSCOVR/EPIC, Sentinel-2/MSI, Sentinel-3/OLCI, COMS/GOCI, GCOM-C/SGLI and FengYun-3D/MERSI2. The products provided by OC-SMART include spectral normalized remote sensing reflectances (Rrs values), chlorophyll_a (CHL) concentrations, and spectral in-water inherent optical properties (IOPs) including absorption coefficients due to phytoplankton (aph), absorption coefficients due to detritus and Gelbstoff (adg) and backscattering coefficients due to particulates (bbp). Spectral aerosol optical depths (AODs) and cloud mask results are also provided by OC-SMART. The goal of OC-SMART is to improve the quality of global ocean color products retrieved from satellite sensors, especially under complex environmental conditions, such as coastal/inland turbid water areas and heavy aerosol loadings. Therefore, the atmospheric correction (AC) and ocean IOP algorithms in OC-SMART are driven by extensive radiative transfer (RT) simulations in conjunction with powerful machine learning techniques.To simulate top of the atmosphere (TOA) radiances, we solve the radiative transfer equation pertinent for the coupled atmosphere-ocean system. For each sensor, we have created about 13 million RT simulations and comprehensive training datasets to support the development of the machine learning AC and in-water IOP algorithms. The results, as demonstrated in this paper, are very promising. Not only does OC-SMART improve the quality of the retrieved water products, it also resolves the negative water-leaving radiance problem that has plagued heritage AC algorithms. The comprehensive training datasets created using multiple atmosphere, aerosol, and ocean IOP models ensure global and generic applicability of OC-SMART. The use of machine learning algorithms makes OC-SMART roughly 10 times faster than NASA's SeaDAS platform. OC-SMART also includes an advanced cloud screening algorithm and is resilient to the contamination by weak to moderate sunglint and cloud edges. It is therefore capable of recovering large amounts of data that are discarded by other algorithms (such as those implemented in NASA's SeaDAS package), especially in coastal areas. OC-SMART is currently available as a standalone Python package or as a plugin that can be installed in ESA's Sentinel Application Platform (SNAP)." @default.
- W3113305891 created "2020-12-21" @default.
- W3113305891 creator A5000432967 @default.
- W3113305891 creator A5006667919 @default.
- W3113305891 creator A5013335966 @default.
- W3113305891 creator A5026812279 @default.
- W3113305891 creator A5030041063 @default.
- W3113305891 creator A5041418083 @default.
- W3113305891 creator A5045186566 @default.
- W3113305891 creator A5051225082 @default.
- W3113305891 creator A5070270356 @default.
- W3113305891 creator A5075626502 @default.
- W3113305891 date "2021-02-01" @default.
- W3113305891 modified "2023-10-18" @default.
- W3113305891 title "OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors" @default.
- W3113305891 cites W1815597855 @default.
- W3113305891 cites W1817841038 @default.
- W3113305891 cites W1901665355 @default.
- W3113305891 cites W1968416755 @default.
- W3113305891 cites W1973590465 @default.
- W3113305891 cites W1985562997 @default.
- W3113305891 cites W1989207396 @default.
- W3113305891 cites W1995322360 @default.
- W3113305891 cites W1995811252 @default.
- W3113305891 cites W1997085102 @default.
- W3113305891 cites W2007427384 @default.
- W3113305891 cites W2019787708 @default.
- W3113305891 cites W2021849967 @default.
- W3113305891 cites W2027362352 @default.
- W3113305891 cites W2028755967 @default.
- W3113305891 cites W2036325798 @default.
- W3113305891 cites W2043223588 @default.
- W3113305891 cites W2050402931 @default.
- W3113305891 cites W2055028938 @default.
- W3113305891 cites W2055381602 @default.
- W3113305891 cites W2058064735 @default.
- W3113305891 cites W2061522318 @default.
- W3113305891 cites W2066317034 @default.
- W3113305891 cites W2067653420 @default.
- W3113305891 cites W2069237624 @default.
- W3113305891 cites W2072155429 @default.
- W3113305891 cites W2078554852 @default.
- W3113305891 cites W2086558389 @default.
- W3113305891 cites W2088665921 @default.
- W3113305891 cites W2089433206 @default.
- W3113305891 cites W2090373670 @default.
- W3113305891 cites W2090886386 @default.
- W3113305891 cites W2093580555 @default.
- W3113305891 cites W2103496339 @default.
- W3113305891 cites W2103908508 @default.
- W3113305891 cites W2113977799 @default.
- W3113305891 cites W2126481883 @default.
- W3113305891 cites W2127595139 @default.
- W3113305891 cites W2131752879 @default.
- W3113305891 cites W2134658045 @default.
- W3113305891 cites W2140030694 @default.
- W3113305891 cites W2149463205 @default.
- W3113305891 cites W2155782014 @default.
- W3113305891 cites W2159400622 @default.
- W3113305891 cites W2160918457 @default.
- W3113305891 cites W2163883177 @default.
- W3113305891 cites W2165696931 @default.
- W3113305891 cites W2166347285 @default.
- W3113305891 cites W2179103847 @default.
- W3113305891 cites W2418765907 @default.
- W3113305891 cites W2462025444 @default.
- W3113305891 cites W2560167313 @default.
- W3113305891 cites W2565847907 @default.
- W3113305891 cites W2591774339 @default.
- W3113305891 cites W2593522913 @default.
- W3113305891 cites W2739894346 @default.
- W3113305891 cites W2751239848 @default.
- W3113305891 cites W2767892373 @default.
- W3113305891 cites W2791712864 @default.
- W3113305891 cites W2794375955 @default.
- W3113305891 cites W2795695788 @default.
- W3113305891 cites W2804418076 @default.
- W3113305891 cites W2896093403 @default.
- W3113305891 cites W2905112502 @default.
- W3113305891 cites W2946594218 @default.
- W3113305891 doi "https://doi.org/10.1016/j.rse.2020.112236" @default.
- W3113305891 hasPublicationYear "2021" @default.
- W3113305891 type Work @default.
- W3113305891 sameAs 3113305891 @default.
- W3113305891 citedByCount "50" @default.
- W3113305891 countsByYear W31133058912021 @default.
- W3113305891 countsByYear W31133058912022 @default.
- W3113305891 countsByYear W31133058912023 @default.
- W3113305891 crossrefType "journal-article" @default.
- W3113305891 hasAuthorship W3113305891A5000432967 @default.
- W3113305891 hasAuthorship W3113305891A5006667919 @default.
- W3113305891 hasAuthorship W3113305891A5013335966 @default.
- W3113305891 hasAuthorship W3113305891A5026812279 @default.
- W3113305891 hasAuthorship W3113305891A5030041063 @default.
- W3113305891 hasAuthorship W3113305891A5041418083 @default.
- W3113305891 hasAuthorship W3113305891A5045186566 @default.
- W3113305891 hasAuthorship W3113305891A5051225082 @default.
- W3113305891 hasAuthorship W3113305891A5070270356 @default.