Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113456491> ?p ?o ?g. }
- W3113456491 endingPage "2150032" @default.
- W3113456491 startingPage "2150032" @default.
- W3113456491 abstract "Though the high-frequency volatility approaches are increasingly introduced to forecast financial risk in recent years, whether they can improve the accuracies of risk forecasts remains controversial. This paper compares the risk forecasting abilities of four pairs of low- and high-frequency volatility models, by calculating and evaluating the downside and upside value-at-risk and expected shortfall of stock indexes and portfolio. The empirical results show that, first, all the volatility models can well filter the serial dependence in the extremes, and the conditional standard deviation obtained from the GARCH model performs best in filtering the dependence. Secondly, the backtesting results of stock index and portfolio risk forecasts are consistent. More specifically, the traditional low-frequency volatility models produce more accurate risk forecasts in most cases, whereas the high-frequency volatility methods also manifest some advantages in the upside extreme risk forecasting." @default.
- W3113456491 created "2021-01-05" @default.
- W3113456491 creator A5017224127 @default.
- W3113456491 creator A5019190057 @default.
- W3113456491 creator A5028398999 @default.
- W3113456491 creator A5054845020 @default.
- W3113456491 date "2020-12-30" @default.
- W3113456491 modified "2023-10-16" @default.
- W3113456491 title "Do High-Frequency Volatility Methods Improve the Accuracies of Risk Forecasts? Evidence from Stock Indexes and Portfolio" @default.
- W3113456491 cites W1590831612 @default.
- W3113456491 cites W1594603170 @default.
- W3113456491 cites W1963787328 @default.
- W3113456491 cites W1977970167 @default.
- W3113456491 cites W1986267710 @default.
- W3113456491 cites W1992105816 @default.
- W3113456491 cites W1994403842 @default.
- W3113456491 cites W1995844635 @default.
- W3113456491 cites W2019291268 @default.
- W3113456491 cites W2044157386 @default.
- W3113456491 cites W2050143770 @default.
- W3113456491 cites W2068138154 @default.
- W3113456491 cites W2089551377 @default.
- W3113456491 cites W2111098027 @default.
- W3113456491 cites W2119649214 @default.
- W3113456491 cites W2126434678 @default.
- W3113456491 cites W2135177937 @default.
- W3113456491 cites W2146134639 @default.
- W3113456491 cites W2295520480 @default.
- W3113456491 cites W2298125877 @default.
- W3113456491 cites W2320148535 @default.
- W3113456491 cites W2487337118 @default.
- W3113456491 cites W2536597822 @default.
- W3113456491 cites W2562912215 @default.
- W3113456491 cites W2605480711 @default.
- W3113456491 cites W2731572094 @default.
- W3113456491 cites W2754836513 @default.
- W3113456491 cites W2767768735 @default.
- W3113456491 cites W2771785007 @default.
- W3113456491 cites W2791754843 @default.
- W3113456491 cites W2792099818 @default.
- W3113456491 cites W2804851729 @default.
- W3113456491 cites W2883208514 @default.
- W3113456491 cites W2896067967 @default.
- W3113456491 cites W2897727847 @default.
- W3113456491 cites W3022035575 @default.
- W3113456491 cites W3102637449 @default.
- W3113456491 cites W3122175640 @default.
- W3113456491 cites W3122817124 @default.
- W3113456491 cites W3125602152 @default.
- W3113456491 cites W3125962101 @default.
- W3113456491 cites W781701470 @default.
- W3113456491 doi "https://doi.org/10.1142/s0219477521500322" @default.
- W3113456491 hasPublicationYear "2020" @default.
- W3113456491 type Work @default.
- W3113456491 sameAs 3113456491 @default.
- W3113456491 citedByCount "0" @default.
- W3113456491 crossrefType "journal-article" @default.
- W3113456491 hasAuthorship W3113456491A5017224127 @default.
- W3113456491 hasAuthorship W3113456491A5019190057 @default.
- W3113456491 hasAuthorship W3113456491A5028398999 @default.
- W3113456491 hasAuthorship W3113456491A5054845020 @default.
- W3113456491 hasConcept C10138342 @default.
- W3113456491 hasConcept C106159729 @default.
- W3113456491 hasConcept C117996083 @default.
- W3113456491 hasConcept C127413603 @default.
- W3113456491 hasConcept C149782125 @default.
- W3113456491 hasConcept C162324750 @default.
- W3113456491 hasConcept C204036174 @default.
- W3113456491 hasConcept C23922673 @default.
- W3113456491 hasConcept C2776719154 @default.
- W3113456491 hasConcept C2780821815 @default.
- W3113456491 hasConcept C32896092 @default.
- W3113456491 hasConcept C41008148 @default.
- W3113456491 hasConcept C5496284 @default.
- W3113456491 hasConcept C60092789 @default.
- W3113456491 hasConcept C78519656 @default.
- W3113456491 hasConcept C85393063 @default.
- W3113456491 hasConcept C91602232 @default.
- W3113456491 hasConcept C94128290 @default.
- W3113456491 hasConceptScore W3113456491C10138342 @default.
- W3113456491 hasConceptScore W3113456491C106159729 @default.
- W3113456491 hasConceptScore W3113456491C117996083 @default.
- W3113456491 hasConceptScore W3113456491C127413603 @default.
- W3113456491 hasConceptScore W3113456491C149782125 @default.
- W3113456491 hasConceptScore W3113456491C162324750 @default.
- W3113456491 hasConceptScore W3113456491C204036174 @default.
- W3113456491 hasConceptScore W3113456491C23922673 @default.
- W3113456491 hasConceptScore W3113456491C2776719154 @default.
- W3113456491 hasConceptScore W3113456491C2780821815 @default.
- W3113456491 hasConceptScore W3113456491C32896092 @default.
- W3113456491 hasConceptScore W3113456491C41008148 @default.
- W3113456491 hasConceptScore W3113456491C5496284 @default.
- W3113456491 hasConceptScore W3113456491C60092789 @default.
- W3113456491 hasConceptScore W3113456491C78519656 @default.
- W3113456491 hasConceptScore W3113456491C85393063 @default.
- W3113456491 hasConceptScore W3113456491C91602232 @default.
- W3113456491 hasConceptScore W3113456491C94128290 @default.
- W3113456491 hasFunder F4320321001 @default.