Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113504927> ?p ?o ?g. }
- W3113504927 endingPage "104867" @default.
- W3113504927 startingPage "104867" @default.
- W3113504927 abstract "Groundwater samples from 32 principal aquifers across the United States (U.S.) provide a broad spatial scope of the occurrence and distribution of strontium (Sr) and are used to assess environments and factors that influence Sr concentration. Strontium is a common trace element in soils, rocks, and water and is ubiquitous in groundwater with detectable concentrations in 99.8% of samples (n = 4,824; median = 225 μg/L). Concentrations in 2.3% of samples exceeded the 4,000 μg/L health-based screening level. The relative importance of controlling factors on Sr concentration are spatially variable and partly dependent on the type of groundwater well. Three case settings illustrate controls on Sr concentration. For drinking-water supply wells, most high concentrations (>4,000 μg/L) were measured in samples from carbonate aquifers that resulted from water-rock interaction with Sr-bearing rocks and minerals. High Sr concentrations from monitoring wells were more common in unconsolidated sand and gravel aquifers in arid or semi-arid setting where shallow groundwater is affected by irrigation and evaporative concentration of dissolved constituents in combination with lithologic or applied Sr sources. Upwelling saline groundwater is also a source of Sr in some locations. Total dissolved solids concentration is an indicator of high Sr in all settings. An estimated 2.2 million people in the conterminous U.S. are potentially supplied water from public-supply wells with high Sr concentration, ~86% of whom use carbonate aquifers (with more than half supplied by the Floridan aquifer system). An additional 120,000 people are potentially supplied high-Sr-concentration water from domestic wells, more than half of whom (~58%) are in Texas. This study markedly expands the coverage of previous surveys of Sr in groundwater and is of interest given potential adverse human-health effects related to elevated concentrations of Sr and consideration of Sr for drinking-water regulation. Case settings with elevated Sr described for U.S. groundwater are likely indicative of settings and processes affecting Sr concentration in groundwater globally. • Sr is characterized in U.S. groundwater using an extensive dataset (n = 4,824). • High Sr (>4,000 μg/L) potentially affects drinking water for ~2.3 million people. • High Sr concentrations cluster in specific aquifers and settings. • Most high Sr occurs in carbonate lithology aquifers from water-rock interaction. • Processes in arid agricultural areas and saline groundwater mixing also important." @default.
- W3113504927 created "2021-01-05" @default.
- W3113504927 creator A5074463150 @default.
- W3113504927 date "2021-03-01" @default.
- W3113504927 modified "2023-09-25" @default.
- W3113504927 title "The occurrence and distribution of strontium in U.S. groundwater" @default.
- W3113504927 cites W1499004528 @default.
- W3113504927 cites W1962924846 @default.
- W3113504927 cites W1965225630 @default.
- W3113504927 cites W1976620802 @default.
- W3113504927 cites W1979147260 @default.
- W3113504927 cites W1981900122 @default.
- W3113504927 cites W1984673975 @default.
- W3113504927 cites W1989182282 @default.
- W3113504927 cites W1991952401 @default.
- W3113504927 cites W1994454879 @default.
- W3113504927 cites W1996172693 @default.
- W3113504927 cites W1996913758 @default.
- W3113504927 cites W1997137838 @default.
- W3113504927 cites W2003587474 @default.
- W3113504927 cites W2008587428 @default.
- W3113504927 cites W2016069720 @default.
- W3113504927 cites W2019758284 @default.
- W3113504927 cites W2023085995 @default.
- W3113504927 cites W2032231421 @default.
- W3113504927 cites W2036559319 @default.
- W3113504927 cites W2037449089 @default.
- W3113504927 cites W2039203839 @default.
- W3113504927 cites W2052895954 @default.
- W3113504927 cites W2052970068 @default.
- W3113504927 cites W2053047171 @default.
- W3113504927 cites W2058364663 @default.
- W3113504927 cites W2058745160 @default.
- W3113504927 cites W2060619762 @default.
- W3113504927 cites W2065544868 @default.
- W3113504927 cites W2067162686 @default.
- W3113504927 cites W2068671071 @default.
- W3113504927 cites W2079428926 @default.
- W3113504927 cites W2080652306 @default.
- W3113504927 cites W2090352661 @default.
- W3113504927 cites W2091482249 @default.
- W3113504927 cites W2098316482 @default.
- W3113504927 cites W2109013761 @default.
- W3113504927 cites W2116611810 @default.
- W3113504927 cites W2124337990 @default.
- W3113504927 cites W2125095996 @default.
- W3113504927 cites W2126156539 @default.
- W3113504927 cites W2134650967 @default.
- W3113504927 cites W2142588974 @default.
- W3113504927 cites W2144718891 @default.
- W3113504927 cites W2149397149 @default.
- W3113504927 cites W2160435130 @default.
- W3113504927 cites W2166270636 @default.
- W3113504927 cites W2178646271 @default.
- W3113504927 cites W2345734347 @default.
- W3113504927 cites W2413169956 @default.
- W3113504927 cites W2413863314 @default.
- W3113504927 cites W2767740076 @default.
- W3113504927 cites W2808265321 @default.
- W3113504927 cites W2950695937 @default.
- W3113504927 cites W2970728959 @default.
- W3113504927 cites W3012696243 @default.
- W3113504927 cites W3031874757 @default.
- W3113504927 cites W4237478297 @default.
- W3113504927 doi "https://doi.org/10.1016/j.apgeochem.2020.104867" @default.
- W3113504927 hasPublicationYear "2021" @default.
- W3113504927 type Work @default.
- W3113504927 sameAs 3113504927 @default.
- W3113504927 citedByCount "25" @default.
- W3113504927 countsByYear W31135049272021 @default.
- W3113504927 countsByYear W31135049272022 @default.
- W3113504927 countsByYear W31135049272023 @default.
- W3113504927 crossrefType "journal-article" @default.
- W3113504927 hasAuthorship W3113504927A5074463150 @default.
- W3113504927 hasBestOaLocation W31135049271 @default.
- W3113504927 hasConcept C110121322 @default.
- W3113504927 hasConcept C127313418 @default.
- W3113504927 hasConcept C134306372 @default.
- W3113504927 hasConcept C137581210 @default.
- W3113504927 hasConcept C17409809 @default.
- W3113504927 hasConcept C178790620 @default.
- W3113504927 hasConcept C185592680 @default.
- W3113504927 hasConcept C187320778 @default.
- W3113504927 hasConcept C33923547 @default.
- W3113504927 hasConcept C39432304 @default.
- W3113504927 hasConcept C518915863 @default.
- W3113504927 hasConcept C76177295 @default.
- W3113504927 hasConceptScore W3113504927C110121322 @default.
- W3113504927 hasConceptScore W3113504927C127313418 @default.
- W3113504927 hasConceptScore W3113504927C134306372 @default.
- W3113504927 hasConceptScore W3113504927C137581210 @default.
- W3113504927 hasConceptScore W3113504927C17409809 @default.
- W3113504927 hasConceptScore W3113504927C178790620 @default.
- W3113504927 hasConceptScore W3113504927C185592680 @default.
- W3113504927 hasConceptScore W3113504927C187320778 @default.
- W3113504927 hasConceptScore W3113504927C33923547 @default.
- W3113504927 hasConceptScore W3113504927C39432304 @default.
- W3113504927 hasConceptScore W3113504927C518915863 @default.