Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113564846> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3113564846 endingPage "105523" @default.
- W3113564846 startingPage "105523" @default.
- W3113564846 abstract "In this paper, we study the distributed learning algorithm and the distribution regression problem of coefficient regularization for Mercer kernels. By utilizing divided-and-conquer approach, we partition a data set into disjoint data subsets for different learning machines, and get the global estimator from local estimators. By using second order decomposition on the difference of operator inverse and properties of trace operator, we show that under some priori conditions of regression function, the result of distributed learning algorithm is as good as that in single batch data algorithm. On the other hand, we give a learning rate of distribution regression problem under the coefficient regularization scheme by using similar operator methods. We find that our learning scheme performs well when the regression function has stronger regularity. And we can see the deep relation of these two different problems." @default.
- W3113564846 created "2021-01-05" @default.
- W3113564846 creator A5049676276 @default.
- W3113564846 creator A5090528494 @default.
- W3113564846 date "2021-03-01" @default.
- W3113564846 modified "2023-09-25" @default.
- W3113564846 title "Distributed learning and distribution regression of coefficient regularization" @default.
- W3113564846 cites W1970781863 @default.
- W3113564846 cites W2027057364 @default.
- W3113564846 cites W2043216646 @default.
- W3113564846 cites W2045386260 @default.
- W3113564846 cites W2046493556 @default.
- W3113564846 cites W2047278710 @default.
- W3113564846 cites W2099210314 @default.
- W3113564846 cites W2139252659 @default.
- W3113564846 cites W2142563104 @default.
- W3113564846 cites W2613940844 @default.
- W3113564846 cites W2700204661 @default.
- W3113564846 cites W2734562936 @default.
- W3113564846 cites W2803423166 @default.
- W3113564846 doi "https://doi.org/10.1016/j.jat.2020.105523" @default.
- W3113564846 hasPublicationYear "2021" @default.
- W3113564846 type Work @default.
- W3113564846 sameAs 3113564846 @default.
- W3113564846 citedByCount "1" @default.
- W3113564846 countsByYear W31135648462023 @default.
- W3113564846 crossrefType "journal-article" @default.
- W3113564846 hasAuthorship W3113564846A5049676276 @default.
- W3113564846 hasAuthorship W3113564846A5090528494 @default.
- W3113564846 hasConcept C104317684 @default.
- W3113564846 hasConcept C105795698 @default.
- W3113564846 hasConcept C11413529 @default.
- W3113564846 hasConcept C118615104 @default.
- W3113564846 hasConcept C126255220 @default.
- W3113564846 hasConcept C154945302 @default.
- W3113564846 hasConcept C158448853 @default.
- W3113564846 hasConcept C17020691 @default.
- W3113564846 hasConcept C17418463 @default.
- W3113564846 hasConcept C185429906 @default.
- W3113564846 hasConcept C185592680 @default.
- W3113564846 hasConcept C2776135515 @default.
- W3113564846 hasConcept C28826006 @default.
- W3113564846 hasConcept C33923547 @default.
- W3113564846 hasConcept C41008148 @default.
- W3113564846 hasConcept C45340560 @default.
- W3113564846 hasConcept C55493867 @default.
- W3113564846 hasConcept C86339819 @default.
- W3113564846 hasConceptScore W3113564846C104317684 @default.
- W3113564846 hasConceptScore W3113564846C105795698 @default.
- W3113564846 hasConceptScore W3113564846C11413529 @default.
- W3113564846 hasConceptScore W3113564846C118615104 @default.
- W3113564846 hasConceptScore W3113564846C126255220 @default.
- W3113564846 hasConceptScore W3113564846C154945302 @default.
- W3113564846 hasConceptScore W3113564846C158448853 @default.
- W3113564846 hasConceptScore W3113564846C17020691 @default.
- W3113564846 hasConceptScore W3113564846C17418463 @default.
- W3113564846 hasConceptScore W3113564846C185429906 @default.
- W3113564846 hasConceptScore W3113564846C185592680 @default.
- W3113564846 hasConceptScore W3113564846C2776135515 @default.
- W3113564846 hasConceptScore W3113564846C28826006 @default.
- W3113564846 hasConceptScore W3113564846C33923547 @default.
- W3113564846 hasConceptScore W3113564846C41008148 @default.
- W3113564846 hasConceptScore W3113564846C45340560 @default.
- W3113564846 hasConceptScore W3113564846C55493867 @default.
- W3113564846 hasConceptScore W3113564846C86339819 @default.
- W3113564846 hasFunder F4320321001 @default.
- W3113564846 hasLocation W31135648461 @default.
- W3113564846 hasOpenAccess W3113564846 @default.
- W3113564846 hasPrimaryLocation W31135648461 @default.
- W3113564846 hasRelatedWork W1493561834 @default.
- W3113564846 hasRelatedWork W1980892922 @default.
- W3113564846 hasRelatedWork W1988224349 @default.
- W3113564846 hasRelatedWork W1989837964 @default.
- W3113564846 hasRelatedWork W2045048921 @default.
- W3113564846 hasRelatedWork W2153599441 @default.
- W3113564846 hasRelatedWork W2313490880 @default.
- W3113564846 hasRelatedWork W3205721448 @default.
- W3113564846 hasRelatedWork W4386554613 @default.
- W3113564846 hasRelatedWork W2598184193 @default.
- W3113564846 hasVolume "263" @default.
- W3113564846 isParatext "false" @default.
- W3113564846 isRetracted "false" @default.
- W3113564846 magId "3113564846" @default.
- W3113564846 workType "article" @default.