Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113574389> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3113574389 endingPage "118701" @default.
- W3113574389 startingPage "118701" @default.
- W3113574389 abstract "The single-molecule fluorescence resonance energy transfer (smFRET) technique plays an important role in the development of biophysics. Measuring the changes of the fluorescence intensities of donor and acceptor and of the FRET efficiency can reveal the changes of distance between the labeling positions. The smFRET may be used to study conformational changes of DNA, proteins and other biomolecules. Traditional algorithm for smFRET data processing is highly dependent on manual operation, leading to high noise, low efficiency and low reliability of the outputs. In the present work, we propose an automatic and more accurate algorithm for smFRET data processing. It consists of three parts: algorithm for automatic pairing of donor and acceptor fluorescence spots based on negative correlation between their intensities; algorithm for data screening by eliminating invalid fluorescence spots sections; algorithm for global data fitting based on Baum-Welch algorithm of hidden Markov model (HMM). Based on the law of energy conservation, the light intensity of one pair of donor and acceptor shows a negative correlation. We can use this feature to find the active smFRET pairs automatically. The algorithm will first find out three active smFRET pairs with correlation coefficient lower than the threshold we set. This three active smFRET pairs will provide enough coordinate data for the algorithm to calculate the pairing matrix in the rest of automatic pairing work. After obtaining all the smFRET pairs, the algorithm for data screening will check the correlation coefficient for each pair. The invalid pairs with correlation coefficient higher than the threshold value will be eliminated. The rest of smFRET pairs will be analyzed by the data fitting algorithm. The Baum-Welch algorithm can be used for learning the global parameters. The global parameters we obtained will then be used to fit each FRET-time curve with Viterbi algorithm. The global parameter learning part will help us find the specific FRET efficiency for each state and the curve fitting part will provide more kinetic parameters. The optimization algorithm significantly simplifies the procedures of manual operation in the traditional algorithm and eliminate several types of noises from the experimental data automatically. We apply the new optimization algorithm to the analyses of folding kinetics data for human telomere repeat sequence, the G-quadruplex DNA. It is demonstrated that the optimization algorithm is more efficient to produce data with higher S/N ratio than the traditional algorithm. The final results reveal clearly the folding of G-quadruplex DNA in multiple states that are influenced by the K+ concentration." @default.
- W3113574389 created "2021-01-05" @default.
- W3113574389 creator A5015600384 @default.
- W3113574389 creator A5018135780 @default.
- W3113574389 creator A5022998379 @default.
- W3113574389 creator A5036805518 @default.
- W3113574389 creator A5038664741 @default.
- W3113574389 creator A5062978902 @default.
- W3113574389 creator A5066938008 @default.
- W3113574389 creator A5080745943 @default.
- W3113574389 date "2017-01-01" @default.
- W3113574389 modified "2023-09-27" @default.
- W3113574389 title "An optimization algorithm for single-molecule fluorescence resonance (smFRET) data processing" @default.
- W3113574389 cites W1964790454 @default.
- W3113574389 cites W1987824698 @default.
- W3113574389 cites W2008120871 @default.
- W3113574389 cites W2045110889 @default.
- W3113574389 cites W2060177604 @default.
- W3113574389 cites W2078024052 @default.
- W3113574389 cites W2078983835 @default.
- W3113574389 cites W2101330556 @default.
- W3113574389 cites W2105543230 @default.
- W3113574389 cites W2125838338 @default.
- W3113574389 cites W2126726250 @default.
- W3113574389 cites W2132316084 @default.
- W3113574389 cites W2137410262 @default.
- W3113574389 cites W2142844453 @default.
- W3113574389 cites W2156324690 @default.
- W3113574389 cites W2157456092 @default.
- W3113574389 cites W2160664302 @default.
- W3113574389 cites W2168419371 @default.
- W3113574389 cites W2224705212 @default.
- W3113574389 cites W2330328827 @default.
- W3113574389 cites W3112262456 @default.
- W3113574389 cites W3113410677 @default.
- W3113574389 doi "https://doi.org/10.7498/aps.66.118701" @default.
- W3113574389 hasPublicationYear "2017" @default.
- W3113574389 type Work @default.
- W3113574389 sameAs 3113574389 @default.
- W3113574389 citedByCount "1" @default.
- W3113574389 countsByYear W31135743892018 @default.
- W3113574389 crossrefType "journal-article" @default.
- W3113574389 hasAuthorship W3113574389A5015600384 @default.
- W3113574389 hasAuthorship W3113574389A5018135780 @default.
- W3113574389 hasAuthorship W3113574389A5022998379 @default.
- W3113574389 hasAuthorship W3113574389A5036805518 @default.
- W3113574389 hasAuthorship W3113574389A5038664741 @default.
- W3113574389 hasAuthorship W3113574389A5062978902 @default.
- W3113574389 hasAuthorship W3113574389A5066938008 @default.
- W3113574389 hasAuthorship W3113574389A5080745943 @default.
- W3113574389 hasBestOaLocation W31135743891 @default.
- W3113574389 hasConcept C11413529 @default.
- W3113574389 hasConcept C115961682 @default.
- W3113574389 hasConcept C120665830 @default.
- W3113574389 hasConcept C121332964 @default.
- W3113574389 hasConcept C154945302 @default.
- W3113574389 hasConcept C186060115 @default.
- W3113574389 hasConcept C199191878 @default.
- W3113574389 hasConcept C2781455991 @default.
- W3113574389 hasConcept C41008148 @default.
- W3113574389 hasConcept C86803240 @default.
- W3113574389 hasConcept C91881484 @default.
- W3113574389 hasConcept C96305047 @default.
- W3113574389 hasConcept C99498987 @default.
- W3113574389 hasConceptScore W3113574389C11413529 @default.
- W3113574389 hasConceptScore W3113574389C115961682 @default.
- W3113574389 hasConceptScore W3113574389C120665830 @default.
- W3113574389 hasConceptScore W3113574389C121332964 @default.
- W3113574389 hasConceptScore W3113574389C154945302 @default.
- W3113574389 hasConceptScore W3113574389C186060115 @default.
- W3113574389 hasConceptScore W3113574389C199191878 @default.
- W3113574389 hasConceptScore W3113574389C2781455991 @default.
- W3113574389 hasConceptScore W3113574389C41008148 @default.
- W3113574389 hasConceptScore W3113574389C86803240 @default.
- W3113574389 hasConceptScore W3113574389C91881484 @default.
- W3113574389 hasConceptScore W3113574389C96305047 @default.
- W3113574389 hasConceptScore W3113574389C99498987 @default.
- W3113574389 hasIssue "11" @default.
- W3113574389 hasLocation W31135743891 @default.
- W3113574389 hasOpenAccess W3113574389 @default.
- W3113574389 hasPrimaryLocation W31135743891 @default.
- W3113574389 hasRelatedWork W1513553433 @default.
- W3113574389 hasRelatedWork W2004523512 @default.
- W3113574389 hasRelatedWork W2005045204 @default.
- W3113574389 hasRelatedWork W2128177543 @default.
- W3113574389 hasRelatedWork W2586430134 @default.
- W3113574389 hasRelatedWork W2910954903 @default.
- W3113574389 hasRelatedWork W2967592708 @default.
- W3113574389 hasRelatedWork W3190209553 @default.
- W3113574389 hasRelatedWork W4210898145 @default.
- W3113574389 hasRelatedWork W4223520847 @default.
- W3113574389 hasVolume "66" @default.
- W3113574389 isParatext "false" @default.
- W3113574389 isRetracted "false" @default.
- W3113574389 magId "3113574389" @default.
- W3113574389 workType "article" @default.