Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113702544> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W3113702544 abstract "The roads support many different types of users. With geared efforts to advance connected and autonomous vehicles (CAVs), smart mobility systems, and advanced driver assistance-based vehicles, the safety of road users becomes a growing concern. Some users may require more cautious interactions and support to ensure safe usage of the road infrastructures. While considerable effort has been done to detect different types of road users or objects from a vehicle’s viewpoint, there are certain classes of vulnerable road users which have been overlooked in prior works. The objective of this work is to detect vulnerable road users (e.g., Strollers, Motorbikes, and Bicycles) in order to aid in reduction of collisions. We investigate the performance of one-stage and two-stage deep object detection methods in detection of said vulnerable users. Since there is a lack of publicly accessible datasets containing objects of our interest from an infrastructure viewpoint, we introduce our own dataset collected from a road side. We highlight the benefits and shortcomings of the studied methods in the context of vulnerable road users detection under challenging conditions such as occlusions." @default.
- W3113702544 created "2021-01-05" @default.
- W3113702544 creator A5019126604 @default.
- W3113702544 creator A5025866975 @default.
- W3113702544 creator A5049326529 @default.
- W3113702544 creator A5087984685 @default.
- W3113702544 date "2020-10-20" @default.
- W3113702544 modified "2023-10-16" @default.
- W3113702544 title "Vulnerable Road Users Detection based on Convolutional Neural Networks" @default.
- W3113702544 cites W1861492603 @default.
- W3113702544 cites W2037227137 @default.
- W3113702544 cites W2194775991 @default.
- W3113702544 cites W2565639579 @default.
- W3113702544 cites W2570343428 @default.
- W3113702544 cites W2884561390 @default.
- W3113702544 cites W2887374115 @default.
- W3113702544 cites W2887741506 @default.
- W3113702544 cites W2963037989 @default.
- W3113702544 cites W2963323244 @default.
- W3113702544 cites W3012573144 @default.
- W3113702544 cites W3097096317 @default.
- W3113702544 cites W639708223 @default.
- W3113702544 doi "https://doi.org/10.1109/isncc49221.2020.9297332" @default.
- W3113702544 hasPublicationYear "2020" @default.
- W3113702544 type Work @default.
- W3113702544 sameAs 3113702544 @default.
- W3113702544 citedByCount "1" @default.
- W3113702544 countsByYear W31137025442023 @default.
- W3113702544 crossrefType "proceedings-article" @default.
- W3113702544 hasAuthorship W3113702544A5019126604 @default.
- W3113702544 hasAuthorship W3113702544A5025866975 @default.
- W3113702544 hasAuthorship W3113702544A5049326529 @default.
- W3113702544 hasAuthorship W3113702544A5087984685 @default.
- W3113702544 hasConcept C154945302 @default.
- W3113702544 hasConcept C38652104 @default.
- W3113702544 hasConcept C41008148 @default.
- W3113702544 hasConcept C81363708 @default.
- W3113702544 hasConceptScore W3113702544C154945302 @default.
- W3113702544 hasConceptScore W3113702544C38652104 @default.
- W3113702544 hasConceptScore W3113702544C41008148 @default.
- W3113702544 hasConceptScore W3113702544C81363708 @default.
- W3113702544 hasLocation W31137025441 @default.
- W3113702544 hasOpenAccess W3113702544 @default.
- W3113702544 hasPrimaryLocation W31137025441 @default.
- W3113702544 hasRelatedWork W2521062615 @default.
- W3113702544 hasRelatedWork W2735477435 @default.
- W3113702544 hasRelatedWork W2748454020 @default.
- W3113702544 hasRelatedWork W2749468216 @default.
- W3113702544 hasRelatedWork W2901465038 @default.
- W3113702544 hasRelatedWork W2998526951 @default.
- W3113702544 hasRelatedWork W3090822330 @default.
- W3113702544 hasRelatedWork W3119610945 @default.
- W3113702544 hasRelatedWork W3181746755 @default.
- W3113702544 hasRelatedWork W4239686595 @default.
- W3113702544 isParatext "false" @default.
- W3113702544 isRetracted "false" @default.
- W3113702544 magId "3113702544" @default.
- W3113702544 workType "article" @default.