Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113703802> ?p ?o ?g. }
- W3113703802 endingPage "100497" @default.
- W3113703802 startingPage "100497" @default.
- W3113703802 abstract "Machine learning (ML) is becoming an appealing tool in various fields of civil engineering, such as tunneling. A very important issue in tunneling is to know the geological condition of the tunnel route before the construction. Various geological and geotechnical parameters can be considered according to data availability to define tunnels' ground conditions. The Rock Quality Designation (RQD) is one of the most important parameters that are very effective in tunnel geology. This article aims to maximize the prediction accuracy of the RQD parameter along a tunnel route through continuous updating techniques. For this purpose, four ML methods of K-nearest neighbor (KNN), Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Decision Tree (DT) were considered. All the RQD observations along the tunnel route were considered as the models’ inputs. For predicting the RQD status along the entire tunnel route, the ML models use the regression technique. For checking the applicability of the models, the Hamru road tunnel in Iran was used. The models were updated twice to assess the update effect on the results achieved during the tunnel construction. In each prediction phase, all the prediction results were compared using different statistical evaluation criteria and the actual mode. Finally, the comparative tests' findings showed that predictions of the GPR model with R2 = 0.8746/root mean square error (RMSE) = 3.5942101, R2 = 0.9328/RMSE = 2.5580977, and R2 = 0.9433/RMSE = 1.8016325 are generally well-suited to actual results for pre-update, first update, and second update phases, respectively. The updating procedure also leads to prediction models that are more accurate and less uncertain than the previous prediction stage." @default.
- W3113703802 created "2021-01-05" @default.
- W3113703802 creator A5012491705 @default.
- W3113703802 creator A5013989648 @default.
- W3113703802 creator A5015787972 @default.
- W3113703802 creator A5029309253 @default.
- W3113703802 creator A5036330594 @default.
- W3113703802 creator A5072590428 @default.
- W3113703802 date "2021-03-01" @default.
- W3113703802 modified "2023-10-04" @default.
- W3113703802 title "Dynamic prediction models of rock quality designation in tunneling projects" @default.
- W3113703802 cites W1064933406 @default.
- W3113703802 cites W1979446012 @default.
- W3113703802 cites W2050083127 @default.
- W3113703802 cites W2074232696 @default.
- W3113703802 cites W2118407291 @default.
- W3113703802 cites W2129611561 @default.
- W3113703802 cites W2212869354 @default.
- W3113703802 cites W2327996601 @default.
- W3113703802 cites W2335044830 @default.
- W3113703802 cites W2336215333 @default.
- W3113703802 cites W2416069211 @default.
- W3113703802 cites W2511634359 @default.
- W3113703802 cites W2516530595 @default.
- W3113703802 cites W2566958870 @default.
- W3113703802 cites W2604737493 @default.
- W3113703802 cites W2621250627 @default.
- W3113703802 cites W2629464472 @default.
- W3113703802 cites W2699497888 @default.
- W3113703802 cites W2722920141 @default.
- W3113703802 cites W2747169269 @default.
- W3113703802 cites W2791276982 @default.
- W3113703802 cites W2799922438 @default.
- W3113703802 cites W2862751544 @default.
- W3113703802 cites W2884906162 @default.
- W3113703802 cites W2912130719 @default.
- W3113703802 cites W2912902753 @default.
- W3113703802 cites W2921836670 @default.
- W3113703802 cites W2922037631 @default.
- W3113703802 cites W2922123535 @default.
- W3113703802 cites W2925272169 @default.
- W3113703802 cites W2942549247 @default.
- W3113703802 cites W2944454053 @default.
- W3113703802 cites W2947452436 @default.
- W3113703802 cites W2956844504 @default.
- W3113703802 cites W2962940008 @default.
- W3113703802 cites W2964393055 @default.
- W3113703802 cites W2965379793 @default.
- W3113703802 cites W2972445383 @default.
- W3113703802 cites W2975745452 @default.
- W3113703802 cites W2981638931 @default.
- W3113703802 cites W2981697131 @default.
- W3113703802 cites W2989305098 @default.
- W3113703802 cites W2990574233 @default.
- W3113703802 cites W2999155157 @default.
- W3113703802 cites W3034487379 @default.
- W3113703802 cites W3042857983 @default.
- W3113703802 cites W3081269549 @default.
- W3113703802 doi "https://doi.org/10.1016/j.trgeo.2020.100497" @default.
- W3113703802 hasPublicationYear "2021" @default.
- W3113703802 type Work @default.
- W3113703802 sameAs 3113703802 @default.
- W3113703802 citedByCount "17" @default.
- W3113703802 countsByYear W31137038022021 @default.
- W3113703802 countsByYear W31137038022022 @default.
- W3113703802 countsByYear W31137038022023 @default.
- W3113703802 crossrefType "journal-article" @default.
- W3113703802 hasAuthorship W3113703802A5012491705 @default.
- W3113703802 hasAuthorship W3113703802A5013989648 @default.
- W3113703802 hasAuthorship W3113703802A5015787972 @default.
- W3113703802 hasAuthorship W3113703802A5029309253 @default.
- W3113703802 hasAuthorship W3113703802A5036330594 @default.
- W3113703802 hasAuthorship W3113703802A5072590428 @default.
- W3113703802 hasConcept C105795698 @default.
- W3113703802 hasConcept C119857082 @default.
- W3113703802 hasConcept C120398109 @default.
- W3113703802 hasConcept C12267149 @default.
- W3113703802 hasConcept C124101348 @default.
- W3113703802 hasConcept C127313418 @default.
- W3113703802 hasConcept C139945424 @default.
- W3113703802 hasConcept C192562407 @default.
- W3113703802 hasConcept C33923547 @default.
- W3113703802 hasConcept C41008148 @default.
- W3113703802 hasConcept C49040817 @default.
- W3113703802 hasConcept C554190296 @default.
- W3113703802 hasConcept C71813955 @default.
- W3113703802 hasConcept C76155785 @default.
- W3113703802 hasConcept C81692654 @default.
- W3113703802 hasConcept C83546350 @default.
- W3113703802 hasConceptScore W3113703802C105795698 @default.
- W3113703802 hasConceptScore W3113703802C119857082 @default.
- W3113703802 hasConceptScore W3113703802C120398109 @default.
- W3113703802 hasConceptScore W3113703802C12267149 @default.
- W3113703802 hasConceptScore W3113703802C124101348 @default.
- W3113703802 hasConceptScore W3113703802C127313418 @default.
- W3113703802 hasConceptScore W3113703802C139945424 @default.
- W3113703802 hasConceptScore W3113703802C192562407 @default.
- W3113703802 hasConceptScore W3113703802C33923547 @default.