Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113706216> ?p ?o ?g. }
- W3113706216 abstract "Abstract Background Moonlighting proteins (MPs) are a subclass of multifunctional proteins in which more than one independent or usually distinct function occurs in a single polypeptide chain. Identification of unknown cellular processes, understanding novel protein mechanisms, improving the prediction of protein functions, and gaining information about protein evolution are the main reasons to study MPs. They also play an important role in disease pathways and drug-target discovery. Since detecting MPs experimentally is quite a challenge, most of them are detected randomly. Therefore, introducing an appropriate computational approach to predict MPs seems reasonable. Results In this study, we introduced a competent model for detecting moonlighting and non-MPs through extracted features from protein sequences. We attempted to set up a well-judged scheme for detecting outlier proteins. Consequently, 37 distinct feature vectors were utilized to study each protein’s impact on detecting MPs. Furthermore, 8 different classification methods were assessed to find the best performance. To detect outliers, each one of the classifications was executed 100 times by tenfold cross-validation on feature vectors; proteins which misclassified 90 times or more were grouped. This process was applied to every single feature vector and eventually the intersection of these groups was determined as the outlier proteins. The results of tenfold cross-validation on a dataset of 351 samples (containing 215 moonlighting and 136 non-moonlighting proteins) reveal that the SVM method on all feature vectors has the highest performance among all methods in this study and other available methods. Besides, the study of outliers showed that 57 of 351 proteins in the dataset could be an appropriate candidate for the outlier. Among the outlier proteins, there were non-MPs (such as P69797) that have been misclassified in 8 different classification methods with 16 different feature vectors. Because these proteins have been obtained by computational methods, the results of this study could reduce the likelihood of hypothesizing whether these proteins are non-moonlighting at all. Conclusions MPs are difficult to be identified through experimentation. Using distinct feature vectors, our method enabled identification of novel moonlighting proteins. The study also pinpointed that a number of non-MPs are likely to be moonlighting." @default.
- W3113706216 created "2021-01-05" @default.
- W3113706216 creator A5051260584 @default.
- W3113706216 creator A5063853885 @default.
- W3113706216 creator A5068106181 @default.
- W3113706216 creator A5073314328 @default.
- W3113706216 creator A5091054291 @default.
- W3113706216 date "2021-05-24" @default.
- W3113706216 modified "2023-10-16" @default.
- W3113706216 title "Moonlighting protein prediction using physico-chemical and evolutional properties via machine learning methods" @default.
- W3113706216 cites W1519800955 @default.
- W3113706216 cites W1543921112 @default.
- W3113706216 cites W1557352356 @default.
- W3113706216 cites W1558338825 @default.
- W3113706216 cites W1780426348 @default.
- W3113706216 cites W2087322782 @default.
- W3113706216 cites W2091242847 @default.
- W3113706216 cites W2091817414 @default.
- W3113706216 cites W2108044369 @default.
- W3113706216 cites W2124290836 @default.
- W3113706216 cites W2138735117 @default.
- W3113706216 cites W2144510899 @default.
- W3113706216 cites W2148711203 @default.
- W3113706216 cites W2261598201 @default.
- W3113706216 cites W2303867882 @default.
- W3113706216 cites W2342867827 @default.
- W3113706216 cites W2739876930 @default.
- W3113706216 cites W2767268852 @default.
- W3113706216 cites W2767591791 @default.
- W3113706216 cites W2775529910 @default.
- W3113706216 cites W2789538492 @default.
- W3113706216 cites W2885392370 @default.
- W3113706216 cites W2893630561 @default.
- W3113706216 cites W2899234492 @default.
- W3113706216 cites W2998220730 @default.
- W3113706216 cites W4240629327 @default.
- W3113706216 doi "https://doi.org/10.1186/s12859-021-04194-5" @default.
- W3113706216 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8142502" @default.
- W3113706216 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34030624" @default.
- W3113706216 hasPublicationYear "2021" @default.
- W3113706216 type Work @default.
- W3113706216 sameAs 3113706216 @default.
- W3113706216 citedByCount "8" @default.
- W3113706216 countsByYear W31137062162021 @default.
- W3113706216 countsByYear W31137062162022 @default.
- W3113706216 countsByYear W31137062162023 @default.
- W3113706216 crossrefType "journal-article" @default.
- W3113706216 hasAuthorship W3113706216A5051260584 @default.
- W3113706216 hasAuthorship W3113706216A5063853885 @default.
- W3113706216 hasAuthorship W3113706216A5068106181 @default.
- W3113706216 hasAuthorship W3113706216A5073314328 @default.
- W3113706216 hasAuthorship W3113706216A5091054291 @default.
- W3113706216 hasBestOaLocation W31137062161 @default.
- W3113706216 hasConcept C116834253 @default.
- W3113706216 hasConcept C119857082 @default.
- W3113706216 hasConcept C12267149 @default.
- W3113706216 hasConcept C124101348 @default.
- W3113706216 hasConcept C127413603 @default.
- W3113706216 hasConcept C138885662 @default.
- W3113706216 hasConcept C146978453 @default.
- W3113706216 hasConcept C153180895 @default.
- W3113706216 hasConcept C154945302 @default.
- W3113706216 hasConcept C27181475 @default.
- W3113706216 hasConcept C2776401178 @default.
- W3113706216 hasConcept C41008148 @default.
- W3113706216 hasConcept C41895202 @default.
- W3113706216 hasConcept C59822182 @default.
- W3113706216 hasConcept C64543145 @default.
- W3113706216 hasConcept C70721500 @default.
- W3113706216 hasConcept C79337645 @default.
- W3113706216 hasConcept C83665646 @default.
- W3113706216 hasConcept C86803240 @default.
- W3113706216 hasConceptScore W3113706216C116834253 @default.
- W3113706216 hasConceptScore W3113706216C119857082 @default.
- W3113706216 hasConceptScore W3113706216C12267149 @default.
- W3113706216 hasConceptScore W3113706216C124101348 @default.
- W3113706216 hasConceptScore W3113706216C127413603 @default.
- W3113706216 hasConceptScore W3113706216C138885662 @default.
- W3113706216 hasConceptScore W3113706216C146978453 @default.
- W3113706216 hasConceptScore W3113706216C153180895 @default.
- W3113706216 hasConceptScore W3113706216C154945302 @default.
- W3113706216 hasConceptScore W3113706216C27181475 @default.
- W3113706216 hasConceptScore W3113706216C2776401178 @default.
- W3113706216 hasConceptScore W3113706216C41008148 @default.
- W3113706216 hasConceptScore W3113706216C41895202 @default.
- W3113706216 hasConceptScore W3113706216C59822182 @default.
- W3113706216 hasConceptScore W3113706216C64543145 @default.
- W3113706216 hasConceptScore W3113706216C70721500 @default.
- W3113706216 hasConceptScore W3113706216C79337645 @default.
- W3113706216 hasConceptScore W3113706216C83665646 @default.
- W3113706216 hasConceptScore W3113706216C86803240 @default.
- W3113706216 hasIssue "1" @default.
- W3113706216 hasLocation W31137062161 @default.
- W3113706216 hasLocation W31137062162 @default.
- W3113706216 hasLocation W31137062163 @default.
- W3113706216 hasOpenAccess W3113706216 @default.
- W3113706216 hasPrimaryLocation W31137062161 @default.
- W3113706216 hasRelatedWork W2008870648 @default.
- W3113706216 hasRelatedWork W2011081071 @default.
- W3113706216 hasRelatedWork W2153189372 @default.