Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113754865> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3113754865 endingPage "117" @default.
- W3113754865 startingPage "111" @default.
- W3113754865 abstract "ABSTRACTIntroduction: The COVID-19 pandemic has prompted researchers to conduct non-randomized studies in an effort to find an off-label drug that can effectively combat the virus and its effects. While these studies can expedite the drug approval process, researchers must carefully design and analyze such studies in order to perform rigorous science that is reproducible and credible. This article focuses on several key design and analysis considerations that can improve the scientific rigor of non-randomized studies of off-label drugs.Areas covered: The aim of this article is to provide an overview of best approaches that should be considered for non-randomized studies on off-label drugs. We discuss these approaches in detail and use a non-randomized study by Rivera et al. in Cancer Discovery as an example of methods that have been undertaken for COVID-19.Expert opinion: While non-randomized studies are inherently biased, they may be unavoidable in situations such as the COVID-19 pandemic, where researchers need to find an effective treatment quickly. We believe that a well-formed experimental design, high-quality data collection, and a well-thought-out statistical and data analysis plan are sufficient to produce rigorous and credible results for making an optimal decision.KEYWORDS: Clinical trialsCOVID-19non-randomized studyoff-label drughydroxychloroquinepandemicSARS-CoV-2 Article highlights•Non-randomized studies are not a substitute for randomized clinical trials; however, they are unavoidable in situations, such as the COVID-19 pandemic, when scientists need to expedite the process of evaluating off-label drugs.•Before conducting any experiment on off-label drugs, investigators should first develop a transparent experimental design outlining the set of procedures for addressing the research question.•While bias is an inherent problem, non-randomized studies with a well-formulated study design, including an appropriate selection of the control group, a high-quality data collection, and a rigorous analysis plan, can provide dependable results.•In non-randomized studies, the data analysis plan should include how to handle missing data, adjusting for imbalance in the baseline variables, variable selection, model building, sensitivity analysis, and incorporating causality.•Careful variable selection needs to be considered separately for the propensity score model and the main models that are addressing the scientific questions.•Data dredging or data fishing continues to plague the scientific community, and a system that requires a record of the study design and the statistical analysis plan, similar to the U.S. National Library of Medicine’s ClinicalTrials.gov Protocol Registration and Results System, should be developed for non-randomized or real-world studies to address this issue.This box summarizes the key points contained in the article.Declaration of interestThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingThis paper was not funded." @default.
- W3113754865 created "2021-01-05" @default.
- W3113754865 creator A5057286365 @default.
- W3113754865 creator A5062656698 @default.
- W3113754865 date "2020-12-29" @default.
- W3113754865 modified "2023-09-29" @default.
- W3113754865 title "The design and analysis of non-randomized studies: a case study of off-label use of hydroxychloroquine in the COVID-19 pandemic" @default.
- W3113754865 cites W1963805911 @default.
- W3113754865 cites W1981258873 @default.
- W3113754865 cites W1982576137 @default.
- W3113754865 cites W2006918106 @default.
- W3113754865 cites W2009187570 @default.
- W3113754865 cites W2036193982 @default.
- W3113754865 cites W2051866975 @default.
- W3113754865 cites W2054723033 @default.
- W3113754865 cites W2095437242 @default.
- W3113754865 cites W2102520493 @default.
- W3113754865 cites W2122825543 @default.
- W3113754865 cites W2150291618 @default.
- W3113754865 cites W2162772535 @default.
- W3113754865 cites W2765207681 @default.
- W3113754865 cites W2772803673 @default.
- W3113754865 cites W2920466137 @default.
- W3113754865 cites W2944434778 @default.
- W3113754865 cites W2996724598 @default.
- W3113754865 cites W3011568661 @default.
- W3113754865 cites W3019225589 @default.
- W3113754865 cites W3025225546 @default.
- W3113754865 cites W3036398841 @default.
- W3113754865 cites W3044414572 @default.
- W3113754865 cites W3044623713 @default.
- W3113754865 cites W3048376209 @default.
- W3113754865 cites W3087985788 @default.
- W3113754865 cites W3092276933 @default.
- W3113754865 doi "https://doi.org/10.1080/13543784.2021.1868435" @default.
- W3113754865 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33353432" @default.
- W3113754865 hasPublicationYear "2020" @default.
- W3113754865 type Work @default.
- W3113754865 sameAs 3113754865 @default.
- W3113754865 citedByCount "0" @default.
- W3113754865 crossrefType "journal-article" @default.
- W3113754865 hasAuthorship W3113754865A5057286365 @default.
- W3113754865 hasAuthorship W3113754865A5062656698 @default.
- W3113754865 hasConcept C105795698 @default.
- W3113754865 hasConcept C112930515 @default.
- W3113754865 hasConcept C142724271 @default.
- W3113754865 hasConcept C168563851 @default.
- W3113754865 hasConcept C19527891 @default.
- W3113754865 hasConcept C2779134260 @default.
- W3113754865 hasConcept C2779318504 @default.
- W3113754865 hasConcept C3008058167 @default.
- W3113754865 hasConcept C33923547 @default.
- W3113754865 hasConcept C41008148 @default.
- W3113754865 hasConcept C524204448 @default.
- W3113754865 hasConcept C71924100 @default.
- W3113754865 hasConcept C89623803 @default.
- W3113754865 hasConceptScore W3113754865C105795698 @default.
- W3113754865 hasConceptScore W3113754865C112930515 @default.
- W3113754865 hasConceptScore W3113754865C142724271 @default.
- W3113754865 hasConceptScore W3113754865C168563851 @default.
- W3113754865 hasConceptScore W3113754865C19527891 @default.
- W3113754865 hasConceptScore W3113754865C2779134260 @default.
- W3113754865 hasConceptScore W3113754865C2779318504 @default.
- W3113754865 hasConceptScore W3113754865C3008058167 @default.
- W3113754865 hasConceptScore W3113754865C33923547 @default.
- W3113754865 hasConceptScore W3113754865C41008148 @default.
- W3113754865 hasConceptScore W3113754865C524204448 @default.
- W3113754865 hasConceptScore W3113754865C71924100 @default.
- W3113754865 hasConceptScore W3113754865C89623803 @default.
- W3113754865 hasIssue "2" @default.
- W3113754865 hasLocation W31137548651 @default.
- W3113754865 hasOpenAccess W3113754865 @default.
- W3113754865 hasPrimaryLocation W31137548651 @default.
- W3113754865 hasRelatedWork W2028561300 @default.
- W3113754865 hasRelatedWork W2748952813 @default.
- W3113754865 hasRelatedWork W2899084033 @default.
- W3113754865 hasRelatedWork W3106370311 @default.
- W3113754865 hasRelatedWork W3119540162 @default.
- W3113754865 hasRelatedWork W3152916563 @default.
- W3113754865 hasRelatedWork W4256514411 @default.
- W3113754865 hasRelatedWork W4313474620 @default.
- W3113754865 hasRelatedWork W4327956415 @default.
- W3113754865 hasRelatedWork W4381942459 @default.
- W3113754865 hasVolume "30" @default.
- W3113754865 isParatext "false" @default.
- W3113754865 isRetracted "false" @default.
- W3113754865 magId "3113754865" @default.
- W3113754865 workType "article" @default.