Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113852870> ?p ?o ?g. }
- W3113852870 endingPage "2202" @default.
- W3113852870 startingPage "2174" @default.
- W3113852870 abstract "Herein, a random-forest-based Kriging downscaling method (RFRKriging) was tested to increase the spatial resolution of Landsat 8 thermal-infrared remote sensing (TIRS) brightness temperature (Tb) over the central areas of Guangzhou, China. The 240-m Landsat 8 Tb was upscaled from the resampled 30-m Landsat 8 Tb by using the spatial averaging method. Tb was downscaled based on its relationship to spectral reflectance in visible/near-infrared and shortwave infrared bands, spectral indices, including normalized difference vegetation index (NDVI), normalized difference building index (NDBI), and modified normalized difference water index (MNDWI), digital elevation model (DEM), longitude, latitude, impervious surface, vegetation, and soil fractions. The linear regression Kriging (LRKriging) and NDVI-based thermal sharpening algorithm (TsHARP) regression Kriging (TsHARPKriging) were also implemented. Relative to the reference data from the resampled Landsat 8 Tb, the RFRKriging produced satisfactory downscaling results with respect to the maximum coefficient of determination (R2), the minimum root-mean-square error (RMSE), and the minimum ratio between RMSE and the correspondent Landsat 8 Tb standard deviation (RSD). RFRKriging captured Tb differences over roads, forests, water bodies, and buildings and enhanced the spatial details of downscaled Tb in all urban areas. Furthermore, integrating the multi-type predictor variables from 10-m Sentinel-2A and 30-m Landsat 8 image sets, RFRKriging was further applied to downscale 30-m Landsat 8 Tb to 10 m. Then, it was upscaled to 30 m and assessed with the original 30-m Landsat 8 Tb. RFRKriging was an effective and practical method for increasing the spatial resolution, with a low RSD of 0.254, a low RMSE of 0.525 K and a high R2 of 0.935. The RSD of less than 0.5 indicates that RFRKriging could achieve an acceptable downscaling accuracy. Furthermore, RFRKriging enhances the spatial details of a 10-m Tb in complex urban environments while maintaining the intrinsic information and spatial patterns of a downscaled Tb. Due to the unavailability of the 30-m and 10-m Tb truth, this study may only provide a quantitative assessment from some theoretical experiments. Also, a comparison of the RFRKriging downscaled Tb with the resampled Landsat 8 Tb was performed. The results suggest that the proposed RFRKriging downscaling method shows better downscaling performance with more spatial details than the cubic convolution method applied by the National Aeronautics and Space Administration (NASA) Centre." @default.
- W3113852870 created "2021-01-05" @default.
- W3113852870 creator A5001201547 @default.
- W3113852870 creator A5007471609 @default.
- W3113852870 creator A5017341301 @default.
- W3113852870 creator A5017769776 @default.
- W3113852870 creator A5021293751 @default.
- W3113852870 creator A5036537396 @default.
- W3113852870 creator A5047337860 @default.
- W3113852870 creator A5055213066 @default.
- W3113852870 creator A5063344744 @default.
- W3113852870 date "2020-12-30" @default.
- W3113852870 modified "2023-10-16" @default.
- W3113852870 title "Hybrid modelling of random forests and kriging with sentinel-2A multispectral imagery to determine urban brightness temperatures with high resolution" @default.
- W3113852870 cites W1983154923 @default.
- W3113852870 cites W1990330790 @default.
- W3113852870 cites W1996043099 @default.
- W3113852870 cites W2011749277 @default.
- W3113852870 cites W2019364375 @default.
- W3113852870 cites W2026337749 @default.
- W3113852870 cites W2032788463 @default.
- W3113852870 cites W2040105387 @default.
- W3113852870 cites W2044609898 @default.
- W3113852870 cites W2051798177 @default.
- W3113852870 cites W2056435747 @default.
- W3113852870 cites W2073237857 @default.
- W3113852870 cites W2084043086 @default.
- W3113852870 cites W2088052330 @default.
- W3113852870 cites W2089490780 @default.
- W3113852870 cites W2119204870 @default.
- W3113852870 cites W2129080587 @default.
- W3113852870 cites W2149184698 @default.
- W3113852870 cites W2153763028 @default.
- W3113852870 cites W2289805253 @default.
- W3113852870 cites W2301692565 @default.
- W3113852870 cites W2343523346 @default.
- W3113852870 cites W2500249665 @default.
- W3113852870 cites W2550894800 @default.
- W3113852870 cites W2583078780 @default.
- W3113852870 cites W2592340788 @default.
- W3113852870 cites W2741291720 @default.
- W3113852870 cites W2745131289 @default.
- W3113852870 cites W2781374856 @default.
- W3113852870 cites W2799386220 @default.
- W3113852870 cites W2808839797 @default.
- W3113852870 cites W2888997619 @default.
- W3113852870 cites W2896720583 @default.
- W3113852870 cites W2909372683 @default.
- W3113852870 cites W2911964244 @default.
- W3113852870 cites W2915308768 @default.
- W3113852870 cites W2917260472 @default.
- W3113852870 cites W2918246750 @default.
- W3113852870 cites W2948277285 @default.
- W3113852870 cites W2949744317 @default.
- W3113852870 cites W2965247913 @default.
- W3113852870 cites W2995369136 @default.
- W3113852870 cites W3003191626 @default.
- W3113852870 cites W3014481749 @default.
- W3113852870 cites W3017978035 @default.
- W3113852870 cites W3023389216 @default.
- W3113852870 cites W3026092945 @default.
- W3113852870 cites W3102027041 @default.
- W3113852870 cites W3102476541 @default.
- W3113852870 doi "https://doi.org/10.1080/01431161.2020.1851801" @default.
- W3113852870 hasPublicationYear "2020" @default.
- W3113852870 type Work @default.
- W3113852870 sameAs 3113852870 @default.
- W3113852870 citedByCount "3" @default.
- W3113852870 countsByYear W31138528702022 @default.
- W3113852870 countsByYear W31138528702023 @default.
- W3113852870 crossrefType "journal-article" @default.
- W3113852870 hasAuthorship W3113852870A5001201547 @default.
- W3113852870 hasAuthorship W3113852870A5007471609 @default.
- W3113852870 hasAuthorship W3113852870A5017341301 @default.
- W3113852870 hasAuthorship W3113852870A5017769776 @default.
- W3113852870 hasAuthorship W3113852870A5021293751 @default.
- W3113852870 hasAuthorship W3113852870A5036537396 @default.
- W3113852870 hasAuthorship W3113852870A5047337860 @default.
- W3113852870 hasAuthorship W3113852870A5055213066 @default.
- W3113852870 hasAuthorship W3113852870A5063344744 @default.
- W3113852870 hasConcept C105795698 @default.
- W3113852870 hasConcept C107054158 @default.
- W3113852870 hasConcept C120665830 @default.
- W3113852870 hasConcept C121332964 @default.
- W3113852870 hasConcept C125245961 @default.
- W3113852870 hasConcept C127313418 @default.
- W3113852870 hasConcept C139945424 @default.
- W3113852870 hasConcept C153294291 @default.
- W3113852870 hasConcept C1549246 @default.
- W3113852870 hasConcept C154945302 @default.
- W3113852870 hasConcept C173163844 @default.
- W3113852870 hasConcept C18903297 @default.
- W3113852870 hasConcept C205372480 @default.
- W3113852870 hasConcept C205649164 @default.
- W3113852870 hasConcept C25989453 @default.
- W3113852870 hasConcept C33923547 @default.
- W3113852870 hasConcept C39432304 @default.
- W3113852870 hasConcept C41008148 @default.