Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113903945> ?p ?o ?g. }
- W3113903945 abstract "Abstract Background Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in patients with epilepsy. If timely assessment of SUDEP risk can be made, early interventions for optimized treatments might be provided. One of the biomarkers being investigated for SUDEP risk assessment is postictal generalized EEG suppression [postictal generalized EEG suppression (PGES)]. For example, prolonged PGES has been found to be associated with a higher risk for SUDEP. Accurate characterization of PGES requires correct identification of the end of PGES, which is often complicated due to signal noise and artifacts, and has been reported to be a difficult task even for trained clinical professionals. In this work we present a method for automatic detection of the end of PGES using multi-channel EEG recordings, thus enabling the downstream task of SUDEP risk assessment by PGES characterization. Methods We address the detection of the end of PGES as a classification problem. Given a short EEG snippet, a trained model classifies whether it consists of the end of PGES or not. Scalp EEG recordings from a total of 134 patients with epilepsy are used for training a random forest based classification model. Various time-series based features are used to characterize the EEG signal for the classification task. The features that we have used are computationally inexpensive, making it suitable for real-time implementations and low-power solutions. The reference labels for classification are based on annotations by trained clinicians identifying the end of PGES in an EEG recording. Results We evaluated our classification model on an independent test dataset from 34 epileptic patients and obtained an AUreceiver operating characteristic (ROC) (area under the curve) of 0.84. We found that inclusion of multiple EEG channels is important for better classification results, possibly owing to the generalized nature of PGES. Of among the channels included in our analysis, the central EEG channels were found to provide the best discriminative representation for the detection of the end of PGES. Conclusion Accurate detection of the end of PGES is important for PGES characterization and SUDEP risk assessment. In this work, we showed that it is feasible to automatically detect the end of PGES—otherwise difficult to detect due to EEG noise and artifacts—using time-series features derived from multi-channel EEG recordings. In future work, we will explore deep learning based models for improved detection and investigate the downstream task of PGES characterization for SUDEP risk assessment." @default.
- W3113903945 created "2021-01-05" @default.
- W3113903945 creator A5012007074 @default.
- W3113903945 creator A5025050406 @default.
- W3113903945 creator A5046662102 @default.
- W3113903945 creator A5055458864 @default.
- W3113903945 creator A5061016439 @default.
- W3113903945 creator A5065856386 @default.
- W3113903945 creator A5067838064 @default.
- W3113903945 date "2020-12-01" @default.
- W3113903945 modified "2023-10-12" @default.
- W3113903945 title "Automated detection of activity onset after postictal generalized EEG suppression" @default.
- W3113903945 cites W1509177177 @default.
- W3113903945 cites W1975190957 @default.
- W3113903945 cites W2000464950 @default.
- W3113903945 cites W2030503309 @default.
- W3113903945 cites W2046936604 @default.
- W3113903945 cites W2047168771 @default.
- W3113903945 cites W2079476861 @default.
- W3113903945 cites W2088072875 @default.
- W3113903945 cites W2128302979 @default.
- W3113903945 cites W2135733572 @default.
- W3113903945 cites W2142462080 @default.
- W3113903945 cites W2143432139 @default.
- W3113903945 cites W2160145309 @default.
- W3113903945 cites W2212049882 @default.
- W3113903945 cites W2402431342 @default.
- W3113903945 cites W2485686941 @default.
- W3113903945 cites W2498582720 @default.
- W3113903945 cites W2563036039 @default.
- W3113903945 cites W2597477375 @default.
- W3113903945 cites W2607894559 @default.
- W3113903945 cites W2646536716 @default.
- W3113903945 cites W2752242347 @default.
- W3113903945 cites W2767304442 @default.
- W3113903945 cites W2911964244 @default.
- W3113903945 cites W2912105706 @default.
- W3113903945 cites W2995886081 @default.
- W3113903945 cites W3005694506 @default.
- W3113903945 cites W3150360849 @default.
- W3113903945 doi "https://doi.org/10.1186/s12911-020-01307-7" @default.
- W3113903945 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7758926" @default.
- W3113903945 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33357222" @default.
- W3113903945 hasPublicationYear "2020" @default.
- W3113903945 type Work @default.
- W3113903945 sameAs 3113903945 @default.
- W3113903945 citedByCount "4" @default.
- W3113903945 countsByYear W31139039452022 @default.
- W3113903945 countsByYear W31139039452023 @default.
- W3113903945 crossrefType "journal-article" @default.
- W3113903945 hasAuthorship W3113903945A5012007074 @default.
- W3113903945 hasAuthorship W3113903945A5025050406 @default.
- W3113903945 hasAuthorship W3113903945A5046662102 @default.
- W3113903945 hasAuthorship W3113903945A5055458864 @default.
- W3113903945 hasAuthorship W3113903945A5061016439 @default.
- W3113903945 hasAuthorship W3113903945A5065856386 @default.
- W3113903945 hasAuthorship W3113903945A5067838064 @default.
- W3113903945 hasBestOaLocation W31139039451 @default.
- W3113903945 hasConcept C118552586 @default.
- W3113903945 hasConcept C119857082 @default.
- W3113903945 hasConcept C153180895 @default.
- W3113903945 hasConcept C154945302 @default.
- W3113903945 hasConcept C162324750 @default.
- W3113903945 hasConcept C187736073 @default.
- W3113903945 hasConcept C2778186239 @default.
- W3113903945 hasConcept C2780451532 @default.
- W3113903945 hasConcept C28490314 @default.
- W3113903945 hasConcept C41008148 @default.
- W3113903945 hasConcept C522805319 @default.
- W3113903945 hasConcept C71924100 @default.
- W3113903945 hasConceptScore W3113903945C118552586 @default.
- W3113903945 hasConceptScore W3113903945C119857082 @default.
- W3113903945 hasConceptScore W3113903945C153180895 @default.
- W3113903945 hasConceptScore W3113903945C154945302 @default.
- W3113903945 hasConceptScore W3113903945C162324750 @default.
- W3113903945 hasConceptScore W3113903945C187736073 @default.
- W3113903945 hasConceptScore W3113903945C2778186239 @default.
- W3113903945 hasConceptScore W3113903945C2780451532 @default.
- W3113903945 hasConceptScore W3113903945C28490314 @default.
- W3113903945 hasConceptScore W3113903945C41008148 @default.
- W3113903945 hasConceptScore W3113903945C522805319 @default.
- W3113903945 hasConceptScore W3113903945C71924100 @default.
- W3113903945 hasIssue "S12" @default.
- W3113903945 hasLocation W31139039451 @default.
- W3113903945 hasLocation W31139039452 @default.
- W3113903945 hasLocation W31139039453 @default.
- W3113903945 hasOpenAccess W3113903945 @default.
- W3113903945 hasPrimaryLocation W31139039451 @default.
- W3113903945 hasRelatedWork W2103945074 @default.
- W3113903945 hasRelatedWork W2110189011 @default.
- W3113903945 hasRelatedWork W2300756399 @default.
- W3113903945 hasRelatedWork W2606211429 @default.
- W3113903945 hasRelatedWork W2748952813 @default.
- W3113903945 hasRelatedWork W2899084033 @default.
- W3113903945 hasRelatedWork W2961085424 @default.
- W3113903945 hasRelatedWork W4311472507 @default.
- W3113903945 hasRelatedWork W4312092336 @default.
- W3113903945 hasRelatedWork W4313203779 @default.
- W3113903945 hasVolume "20" @default.
- W3113903945 isParatext "false" @default.