Matches in SemOpenAlex for { <https://semopenalex.org/work/W3113991058> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3113991058 endingPage "116471" @default.
- W3113991058 startingPage "116471" @default.
- W3113991058 abstract "In this study, improved prediction methods based on supervised machine-learning algorithms is proposed to predict the effect of the application of air injection and transverse baffles into shell and tube heat exchanger on the thermohydraulic performance. The injection process is accomplished by injecting air into the shell with different flow rates to obtain the optimal thermohydraulic performance. Four different machine-learning algorithms have been employed to predict the thermohydraulic performance of the heat exchanger to avoid mathematical modeling or carrying out costly experiments. These algorithms are random vector functional link, support vector machine, social media optimization, and k-nearest neighbors algorithm. The algorithms were trained and tested using experimental data. The inputs of the algorithms were the cold fluid and injected air volume flow rates; while the outputs were the outlet temperature of hot and cold fluids, in addition to pressure drop across the heat exchanger. The inlet temperatures of inlet hot and cold fluids and volume mass flow rate of hot fluid are considered as constants. The obtained results demonstrate the high ability of the random vector functional link model to find out the nonlinear relationship between the operating conditions and process responses. Moreover, it provides better prediction capabilities of the outlet temperature of hot and cold fluids and pressure drop values compared with the other three investigated models in terms of performance statistical measures. The root mean square error and mean relative error for RVFL results is approximately one-third and one-fourth of that of SMO, SVM, or k-NN, respectively. The root mean square error was, 0.719167, 2.477069, 1.741808, and 1.855635 for RVFL, SMO, SVM, and KNN, respectively; while mean relative error was 0.016167, 0.061746, 0.043366, and 0.041383 for RVFL, SMO, SVM, and k-NN, respectively." @default.
- W3113991058 created "2021-01-05" @default.
- W3113991058 creator A5057217204 @default.
- W3113991058 creator A5079205594 @default.
- W3113991058 creator A5089225559 @default.
- W3113991058 date "2021-02-01" @default.
- W3113991058 modified "2023-10-14" @default.
- W3113991058 title "Machine learning algorithms for improving the prediction of air injection effect on the thermohydraulic performance of shell and tube heat exchanger" @default.
- W3113991058 cites W1596717185 @default.
- W3113991058 cites W1964357740 @default.
- W3113991058 cites W2138383519 @default.
- W3113991058 cites W2765885404 @default.
- W3113991058 cites W2791572747 @default.
- W3113991058 cites W2796295822 @default.
- W3113991058 cites W2898832751 @default.
- W3113991058 cites W2909624415 @default.
- W3113991058 cites W2913949647 @default.
- W3113991058 cites W2921837433 @default.
- W3113991058 cites W2972614343 @default.
- W3113991058 cites W2981264571 @default.
- W3113991058 cites W2982053294 @default.
- W3113991058 cites W2990434870 @default.
- W3113991058 cites W2999395127 @default.
- W3113991058 cites W3000826839 @default.
- W3113991058 cites W3003848908 @default.
- W3113991058 cites W3015527767 @default.
- W3113991058 cites W3020731454 @default.
- W3113991058 cites W3026474717 @default.
- W3113991058 cites W3036225241 @default.
- W3113991058 cites W3042019235 @default.
- W3113991058 cites W3042126860 @default.
- W3113991058 cites W3046817929 @default.
- W3113991058 cites W3047805417 @default.
- W3113991058 cites W3081063323 @default.
- W3113991058 cites W3084123307 @default.
- W3113991058 cites W3086386555 @default.
- W3113991058 cites W3088991633 @default.
- W3113991058 cites W3093359279 @default.
- W3113991058 doi "https://doi.org/10.1016/j.applthermaleng.2020.116471" @default.
- W3113991058 hasPublicationYear "2021" @default.
- W3113991058 type Work @default.
- W3113991058 sameAs 3113991058 @default.
- W3113991058 citedByCount "53" @default.
- W3113991058 countsByYear W31139910582021 @default.
- W3113991058 countsByYear W31139910582022 @default.
- W3113991058 countsByYear W31139910582023 @default.
- W3113991058 crossrefType "journal-article" @default.
- W3113991058 hasAuthorship W3113991058A5057217204 @default.
- W3113991058 hasAuthorship W3113991058A5079205594 @default.
- W3113991058 hasAuthorship W3113991058A5089225559 @default.
- W3113991058 hasConcept C107706546 @default.
- W3113991058 hasConcept C114088122 @default.
- W3113991058 hasConcept C11413529 @default.
- W3113991058 hasConcept C119857082 @default.
- W3113991058 hasConcept C121332964 @default.
- W3113991058 hasConcept C12267149 @default.
- W3113991058 hasConcept C127413603 @default.
- W3113991058 hasConcept C131396349 @default.
- W3113991058 hasConcept C172120300 @default.
- W3113991058 hasConcept C192562407 @default.
- W3113991058 hasConcept C205318045 @default.
- W3113991058 hasConcept C41008148 @default.
- W3113991058 hasConcept C57879066 @default.
- W3113991058 hasConcept C75892298 @default.
- W3113991058 hasConcept C78519656 @default.
- W3113991058 hasConceptScore W3113991058C107706546 @default.
- W3113991058 hasConceptScore W3113991058C114088122 @default.
- W3113991058 hasConceptScore W3113991058C11413529 @default.
- W3113991058 hasConceptScore W3113991058C119857082 @default.
- W3113991058 hasConceptScore W3113991058C121332964 @default.
- W3113991058 hasConceptScore W3113991058C12267149 @default.
- W3113991058 hasConceptScore W3113991058C127413603 @default.
- W3113991058 hasConceptScore W3113991058C131396349 @default.
- W3113991058 hasConceptScore W3113991058C172120300 @default.
- W3113991058 hasConceptScore W3113991058C192562407 @default.
- W3113991058 hasConceptScore W3113991058C205318045 @default.
- W3113991058 hasConceptScore W3113991058C41008148 @default.
- W3113991058 hasConceptScore W3113991058C57879066 @default.
- W3113991058 hasConceptScore W3113991058C75892298 @default.
- W3113991058 hasConceptScore W3113991058C78519656 @default.
- W3113991058 hasLocation W31139910581 @default.
- W3113991058 hasOpenAccess W3113991058 @default.
- W3113991058 hasPrimaryLocation W31139910581 @default.
- W3113991058 hasRelatedWork W1918056892 @default.
- W3113991058 hasRelatedWork W1928806598 @default.
- W3113991058 hasRelatedWork W2083833377 @default.
- W3113991058 hasRelatedWork W2321868893 @default.
- W3113991058 hasRelatedWork W2371196980 @default.
- W3113991058 hasRelatedWork W2381849539 @default.
- W3113991058 hasRelatedWork W2386530521 @default.
- W3113991058 hasRelatedWork W2691710106 @default.
- W3113991058 hasRelatedWork W3084878227 @default.
- W3113991058 hasRelatedWork W4309460914 @default.
- W3113991058 hasVolume "185" @default.
- W3113991058 isParatext "false" @default.
- W3113991058 isRetracted "false" @default.
- W3113991058 magId "3113991058" @default.
- W3113991058 workType "article" @default.